doi: 10. 3969/j. ISSN. 1007 - 2691. 2018. 04. 09

基于 DEMATEL-ISM 的电力 CPS 事故构模分析

李小鹏¹²,李存斌¹²,刘 定¹²,孙肖坤¹²

(1. 华北电力大学 经济与管理学院,北京 102206;2. 华北电力大学 新能源电力与低碳发展研究北京市重点实验室,北京 102206)

摘要: 能源互联网下电力信息融合风险管控将面临更多不确定性和复杂性,主要从复杂事故系统角度研究了 电力 CPS 故障风险传递结构。首先,基于复杂事故系统概念构建了电力 CPS 事故系统,并对电力 CPS 事故 致因因素进行提取梳理;在此基础上,建立 DEMATEL-ISM 解释结构模型对事故因素间传递关系进行分析, 得到各风险致因因素间层次结构和复杂网络结构模型;最后,基于上述研究成果对电力信息融合下的风险传 递发展趋势进行分析。通过研究发现,随着电力信息的深度融合,风险因素间扰动关系更加紧密复杂,关键 节点失效更容易导致大规模系统崩溃。

关键词: 电力信息融合; 事故系统; 风险传递; 解释结构模型; 复杂网络 中图分类号: TM76 文献标识码: A 文章编号: 1007-2691 (2018) 04-0067-11

Power CPS Fault Modeling Analysis Based on DEMATEL-ISM

LI Xiaopeng^{1,2}, LI Cunbin^{1,2}, LIU Ding^{1,2}, SUN Xiaokun^{1,2}

(1. School of Economics and Management, North China Electric Power University,

Beijing 102206, China; 2. Beijing Key Laboratory of New Energy and Low-Carbon Development,

North China Electric Power University, Beijing 102206, China)

Abstract: In the trend of Energy Internet, power information fusion risk control will be more and more uncertain and complex. This paper mainly studies the risk transmission structure of power CPS from the perspective of complex accident system. Firstly, this paper constructed a power CPS accident system on the basis of the concept of complex accident system and summarized power CPS accident risk factors. On this basis, a DEMATEL-ISM interpretation structure model was established to analyze the relationship between the accident factors. Then the hierarchical structure and the complex network structure model were obtained. Finally, the paper analyzed the development trend of risk transmission under the power information fusion. The research showed that with the deep fusion of power information, the relationship between risk factors becomes closer, and the failure of key nodes is more likely to cause large-scale system collapse.

Key words: power information fusion; accident system; risk transmission; DEMATEL-ISM; complex network

收稿日期: 2018-01-01.

基金项目: 国家自然科学基金资助项目 (71671065); 国家电网 公司总部科技项目 (5204BB1600CP); 中央高校基本 科研业务费专项资金 (2017XS100). 0 引 言

为解决目前电力系统交互性差以及清洁能源 利用率低等问题,越来越多的研究关注于通过通 信技术、计算机技术和控制技术(3C: Communication, Computation, Control)促进电力和信息的深 度融合,从而形成一个实时感知、动态控制的电网 信息物理融合系统(Cyber Physical System, CPS)^[1]。在电力信息融合过程中,多元设备、异构 网络以及开放协议等都为电力 CPS 的平稳运行带 来了一定的不确定性和复杂性^[2-5],针对电力信 息融合过程的风险研究尤为重要。

较多文献考虑信息影响对电力系统可靠性和 脆弱性进行评估,分析信息系统广泛融合下的电 力系统安全。文献[6]将信息系统对电力一次系 统的作用形式分为直接作用和间接作用并研究了 直接作用形式下对电力系统稳定性的影响; 文献 [7]分析了信息系统影响电力系统的主要途径,并 从实时性、可靠性和安全性等方面建立指标体系 对不同时间断面上的电力 - 信息复合系统脆弱度 进行评估; 文献 [8] 通过建立电力 - 信息邻接矩阵 对电力信息系统受到的攻击进行分析 ,得到不同 攻击下的电力信息系统脆弱性评估结果; 文献 [9] 对电力信息融合系统中的不同节点赋予不同的信 息价值 模拟针对不同价值节点的先后攻击过程, 对系统脆弱性进行了评估;还有一些成果主要针 对信息网络攻击对电力系统稳定性的影响以及如 何加强电网信息安全、提高风险防御水平进行研 究^[10-12]。上述研究成果在传统电力系统可靠性 及脆弱性评估等问题上创新性的考虑了信息安全 因素 但多是针对静态评估研究 较少考虑电力信 息融合中风险传递过程。

另外一些文献从电力与信息交互融合风险传 递具体问题入手进行了分析研究。文献[13]研究 了通信光缆故障对电力系统连锁故障的影响,发 现不同的通信网络拓扑结构对电力连锁故障影响 不同;文献[14]针对通信系统依赖性较强的电网 广域保护控制系统,建立了电力 – 通信组合预想 故障生成方法,并对电网广域保护控制系统关键 链路进行了识别;还有许多成果分别针对核电站 网络攻击对发电机组影响^[15]、变电站信息系统引 发停电事故^[16]、不同路由策略对电力连锁故障的 影响^[17]以及调度系统风险引发大规模连锁故 障^[18]进行分析。上述针对电力信息融合风险传递 具体问题的研究为进一步研究风险交互机制提供 了一定基础。

也有一些文献针对电力信息融合风险传递交 互机制进行了研究。文献[19]将一个三机九节点 系统模拟为元胞自动机模型,对信息安全风险的 跨空间传递进行了仿真,发现节点的自愈率及风 险跨空间传递概率显著影响系统崩溃速度; 文献 [20]考虑拓扑结构和潮流因素运用渗流理论将电 力 CPS 连锁故障过程描述为故障在信息层和物理 层的不断传播演化 结果表明不同节点对应依靠 策略下连锁故障脆弱性不同; 文献 [21] 总结了电 力信息相互依存网络的建模方法,在此基础上提 出了相互依存边、区域自治节点以及拓扑相似性 等影响电力 CPS 拓扑结构脆弱性的因素; 文献 [22]借助攻击图理论梳理了网络攻击、电力二次 设备故障以及电力系统扰动之间的因果逻辑关 系 并通过仿真给出电力 CPS 网络攻击跨空间传 播的成因、防护重点。上述针对电力信息融合风 险传递机制的研究分别从仿真、拓扑演化攻击过 程等方面给出了风险在电力和信息侧之间演化传 递机制,为进一步研究电力 CPS 风险结构提供了 思路。

从上述针对电力信息交互融合的风险研究成 果可以看出,学者们针对具体问题和交互机理都 进行了一定的研究,但是较少从系统角度,将整个 电力 CPS 作为一个复杂事故系统对风险因素间的 解释结构及动力机制进行分析。本文以建立电力 CPS 故障系统为基础,对电力 CPS 致因因素进行 梳理分析,通过 DEMATEL-ISM 模型对风险事故因 素间层次结构和动力机制进行研究,从复杂事故 系统角度对电力 CPS 风险传递进行全面分析。

1 电力 CPS 故障系统构建

(1) 电力 CPS 事故系统构建

传统的对于电力系统的风险管控一般通过针 对电流、电压、温度以及潮流等的监测和预警实 现,侧重于从物理和设备层面进行分析,取得了较 好的效果,但也有以下问题:一方面,在电力 CPS 复杂系统下进行全面的数据采集和监控代价昂 贵,在监控过程中也难以找到经济性较好的风险 因素控制点;另一方面,针对设备物理层面的监控 难以有效捕捉电力 CPS 运行过程中风险传递动力 学机制,而且很多风险因素完全游离于电力 CPS 物理结构之外。

针对电力 CPS 的事故系统建模则根据系统一 定的映射关系将数目众多的系统元素映射为数量 有限的事故风险因素,通过分析事故因素间的关 联关系和层次结构来构建事故系统模型。 定义1 电力 CPS 事故系统: 将电力 CPS 物理 结构及运行环境中事故风险因素进行关系映射得 到的事故因素集合及其复杂关联关系所构成的递 阶层次结构系统(或立体网状结构系统)称为电力 CPS 事故系统。

一个电力 CPS 事故系统的故障事故控制策略 如图 1 所示。

图 1 电力 CPS 事故系统故障事故控制策略示意图

Fig. 1 Analysis on fault control strategy of power CPS accident system

从图中可知,在电力 CPS 事故系统构建过程 中,首先将系统边界扩大到包含设备及运行环境 等整体因素,将物理运行过程及环境影响分析映 射为一个数目有限的结构化或半结构化的事故风 险集合,通过对风险集合结构化处理进一步进行 风险辨识和动力机制分析,以期实现对重要风险 模块的控制。

(2) 电力 CPS 事故系统致因因素提取

在复杂系统故障致因因素提取过程中,一般 需要遵循系统全面、简明科学、层次分明以及动态 协调等几个原则。传统对于复杂系统事故致因因 素提取一般从部件失效、交互紊乱、外界环境扰动 和适应性衰退等方面进行,本文基于电力 CPS 运 行实际从环境扰动(*H*)、部件失效(*B*)、交互紊 乱(*J*)、适应性衰退(*S*)和管理认知缺乏(*G*)等 方面建立全面致因因素体系,如表1所示。

对于电力 CPS 事故系统致因因素体系说明如 下:

(1) 环境扰动 H:包括存在于物理系统之外的

人为因素 H_2 、非人为的环境因素 H_1 以及虚拟环 境的网络攻击 H_3 等;

表 1 电力 CPS 事故系统致因因素体系

Tab. 1	Power	CPS	Accident	System	Cause	Factors	System	
				- /			- /	

D	I Tower CI	S Accluent Syst	em Cause Factors System			
			 气象灾害 H ₁₁			
		自然灾害	地质灾害 H ₁₂			
		1	偶然事件 H ₁₃			
	环境扰	人为因素 H_2	人为误操作 H ₂₁			
	动 <i>H</i>		人为故意破坏 H ₂₂			
		网络攻击 <i>H</i> ₃	拒绝服务型攻击 H ₃₁			
			利用型攻击 H ₃₂			
			收集信息型攻击 H ₃₃			
	-	物理设备	一次设备故障 B ₁₁			
	部件失	故障 B ₁	二次系统故障 B ₁₂			
	效 B	设备装置	一次设备退出工作 B ₂₁			
		退出工作 B ₂	二次系统退出工作 B ₂₂			
E	-		潮流大范围转移 J_{11}			
2		约束条件 失效 <i>J</i> 1	电压、电流崩溃 J_{12}			
5			系统震荡、解列 J_{13}			
単文	交互紊	非功能性 误交互 J ₂	测量仪器量测偏差 $J_{ m 21}$			
谷充.	乱 <i>J</i>		设备、系统误切/投 $J_{ m 22}$			
收回回素本系			运行参数误调节 $J_{ m 23}$			
			控制与信号系统错误指令 $J_{ m 24}$			
		不合理控制	保护系统误动作 J_{25}			
			员工控制指令失当 J ₃₁			
	适应性衰 _ 退 <i>S</i>	操作 J ₃	系统智能调度失当 $J_{ m 32}$			
		系统结构性	网架结构不合理 S_{11}			
Ê		脆性 S_1	设备隐性缺陷 S_{12}			
		系统更新	设备更新维护不及时 S_{21}			
	_	慢 S ₂	网架升级滞后 S ₂₂			
	管理和认知	不确定	数据库信息不确定性 G_{11}			
	缺乏G	信息 G ₁	数据实时传输不及时 G ₁₂			
		认知存在	模型方法库存在缺陷 G ₂₁			
		缺陷 G ₂	设备研发存在瓶颈 G ₂₂			
		管理制度 不足 <i>G</i> 3	组织制度缺失 G ₃₁			
			激励监督不到位 G ₃₂			

(2) 部件失效 *B*: 根据物理设备失效的原因分为自身故障导致的失效 *B*₁ 以及误切机等操作导致的设备退出工作 *B*₂ 等;

(3) 交互紊乱 J: 根据系统中来自于电力流、 信息流和人员等因素的交互紊乱因素分为约束条 件失效 J₁、非功能性误交互 J₂ 和不合理控制操作 J₃等; (4)适应性衰退 S:从系统结构本身不合理性 及系统更新两个方面分为系统结构性脆性 S₁ 及系 统更新缓慢 S₂;

(5)管理和认知缺乏 G:根据系统存在的未知 风险、认知有限以及管理不足等模糊风险因素分 为不确定信息 G₁、认知存在缺陷 G₂ 以及管理制度 不足 G₃等。

2 DEMATEL-ISM 方法步骤

决策实验室分析法(Decision Making Trial and Evaluation Laboratory, DEMATEL) 是解决复杂系统 致因问题的一种有效方法,最早由美国 Bastille 国 家重点实验室提出,通过图论和矩阵论相关知识 对因素之间影响关系进行详细分析;解释结构模 型分析法(Interpretative Structural Modeling Method, JSM) 同样用于分析复杂系统因素分析,通过将 复杂系统分解为若干个子系统,最终构造一个多 层级递阶的结构模型。

电力 CPS 致因因素多 因素间影响关系复杂, 本文借助 DEMATEL 法在区分因素属性、重要度以 及相互影响关系方面的优势 在此基础上利用 ISM 对各因素影响关系进行分层,使得电力 CPS 致因 过程更加清晰。

基于 DEMATEL-ISM 的电力 CPS 故障致因系 统分析模型步骤如下:

STEP1: 通过调查研究得出复杂系统安全事故 致因因素集合 $A = \{a_1 \ a_2 \ ; \cdots \ a_n\}(i = 1 \ 2 \ ; \cdots , n)$ 。

STEP2:获得初始直接影响矩阵。

确定事故致因因素之间相互影响水平(例如, 可根据影响大小分为较强、强、一般、弱、无 5 个水 平,并赋值 4、3、2、1、0),邀请 *m* 位专家对致因因 素之间影响程度进行评估,得到直接影响矩阵 B^k = $(\beta_{ij}^k)_{n\times n}(k = 1, 2, \dots, m)$,其中, β_{ij}^k 表示第 *k* 位 专家给出的第 *i* 个致因因素 *a_i* 对第 *j* 个致因因素 *a_i* 的直接影响程度。

采用平均法或 OWA 算子对专家数据进行集 结 得到初始直接影响矩阵 $B = (\beta_{ij})_{n \times n} \beta_{ij}$ 为 a_i 对 a_i 的直接影响程度。

式中:
$$\beta_{ij} = \frac{1}{m} \sum_{k=1}^{m} \beta_{ij}^{k}$$
 (平均法) 或 $\beta_{ij} = \frac{1}{m} \sum_{k=1}^{m} \omega_{k} \beta_{ij}^{k}$ (OWA 算子) (1)

STEP3: 直接影响矩阵规范化。

对直接影响矩阵进行规范化处理,得到规范 直接影响矩阵 $C = (c_i)_{n \times n}$

$$c_{ij} = \frac{1}{\max_{1 \le i \le n} \sum_{j=1}^{n} \beta_{ij}} \beta_{ij}$$
(2)

式中: $\max_{1 \le i \le n} \sum_{j=1}^{n} \beta_{ij}$ 为矩阵 *B* 各行之和的最大值, $0 \le c_{ij} < 1$ *i* = *j* 时, $c_{ij} = 0$ 。

STEP4: 计算综合影响矩阵 T。

矩阵 C 表征了各事故因素之间的直接影响, 但在实际复杂系统中,需要考虑因素之间间接影 响以及各影响因素之间相互波及效应,建立综合 影响矩阵 $T = (t_{ij})_{n \times n}$ 表征各因素对系统最高水平 事故因素的影响程度。

 $T = C + C^{2} + \dots + C^{n} = \sum_{i=1}^{n} C^{i}$ (3) STEP5: 计算事故致因因素的影响度 f_{i} 和被影响度 e_{i} 。

影响度 f_i 表征事故因素 a_i 对其他所有因素的 综合影响度 被影响度 e_i 表征其他所有事故因素 对因素 a_i 的综合影响度 ,计算公式如下:

$$f_i = \sum_{j=1}^n t_{ij} (i = 1 \ 2 \ ; \cdots \ n)$$
(4)

$$e_i = \sum_{j=1}^{n} t_{ji} (i = 1 \ 2 \ , \cdots \ , n)$$
 (5)

STEP6: 计算中心度 M_i 和原因度 N_i 。

将事故因素 a_i 的影响度 f_i 与被影响度 e_i 相加 得到中心度 M_i ,中心度表征事故因素 a_i 在所有因 素中的重要程度,中心度越大,重要程度越高;将 事故因素 a_i 的影响度 f_i 与被影响度 e_i 相减得到原 因度 N_i ,原因度表征事故因素 a_i 对其他因素的纯 粹影响关系,也即事故因素 a_i 与其他因素的逻辑 关系, N_i 为正,表示该因素对其他因素影响大于被 影响,为原因因素; N_i 为负,表示该因素对其他因 素影响小于被影响,为结果因素。计算公式如下:

- $M_{i} = f_{i} + e_{i}(i = 1 \ 2 \ , \cdots \ n)$ (6)
- $N_i = f_i e_i (i = 1 \ 2 \ \cdots \ n) \tag{7}$

STEP7: 计算整体影响矩阵 H。

在 DETAMEL 法得到综合影响矩阵 *T* 基础 上,考虑因素自身影响计算整体影响矩阵 *H* = *T* + *I*。其中,当 $h_{ij} > 0$ 时因素*i*和因素*j*之间存在相 互影响关系;当 $h_{ij} = 0$ 时因素*i*和因素*j*相互之间不影响。

STEP8: 选取阈值 λ 和计算可达矩阵 K。 根据阈值 λ 选取原则确定阈值 λ ,由此计算各 致因因素间可达矩阵 $K = (k_{ij})_{n \times n}$ 。 其中

$$k_{ij} = \begin{cases} 1 & h_{ij} \ge \lambda & (i \ j = 1 \ 2 \ ; \cdots \ n) \\ 0 & h_{ij} < \lambda & (i \ j = 1 \ 2 \ ; \cdots \ n) \end{cases}$$
(8)

STEP9: 层次结构分析

对可达矩阵 K 进行层级划分,将各致因因素 分配到不同层级,定义以下几个概念:

可达集合: 可达矩阵 *K* 第 *i* 行中所有元素为 1 的列对应的致因因素为因素 *a_i* 的可达集合 *i*记为 *R_i*;

前因集合: 可到矩阵 *K* 第 *i* 列中所有元素为 1 的行对应的致因因素为因素 *a_i* 的前进集合 *,*记为 *S_i* ;

最高级因素集: 当 $R_i = R_i \cap S_i$ (*i* = 1 2 ,…, *n*) 时,记 R_i 为最高要素集。此时,因素 a_i 不能到 达其他因素,而其他因素可到达因素 $a_i \mu_i$ 为最高 级别因素。

可达集合和前因集合计算公式如下:

$$R_{i} = \{ a_{j} \mid a_{j} \in A \ k_{ij} \neq 0 \} (i = 1 \ 2 \ ; \cdots \ n)$$

$$(9)$$

$$S_{i} = \{ a_{j} \mid a_{j} \in A \ k_{ij} \neq 0 \} (i = 1 \ 2 \ ; \cdots \ n)$$

$$(10)$$

对可达矩阵每一个因素验证 $R_i = R_i \cap S_i$ (*i* = 1, 2, … *n*) 是否成立,如果成立划去因素 a_i 所在行和列 重复以上步骤,直到划除所有因素。

STEP10: 绘制因素层次结构图。

从复杂网络视角绘制因素影响结构图,将致 因因素视为网络节点,因素之间的影响关系视为 网络的边。其中,因素 *a*_i 所在行所有元素为1的 因素为 *a*_i 入边的起点,因素 *a*_i 为该列所有元素为 1的因素的入边的起点。将绘制的电力 CPS 复杂 系统故障致因复杂网络图按照层次划分顺序进行 分级即可得到层级结构图。

3 计算过程

电力 CPS 是一个由人、设备、电流、信息流等 构成的涵盖管理、环境以及交互等各方面因素的 巨大复杂系统,为了分析电力 CPS 事故因素间的 相互关系,划分系统事故因素的层次,本文采用系 统论方法考虑电力 CPS 安全性问题。

(1) 事故案例库分析 在对电力 CPS 事故系统进行分析过程中,对 已发生事故的事后总结起着非常重要的作用,本 文立足于国家电网公司总部科技项目"电网信息 物理融合系统连锁故障与控制策略研究",搜集 2000 年以后国内外发生重大电力系统事故案例, 对典型案例发生过程进行分析,形成电力 CPS 事 故分析案例库(如附表1所示)。

为保证模型准确性,案例库选择过程注重全 面性和典型性:(1)全面性:模型选择事故案例起 因包含台风、地震、暴雨、山火、高温、冰灾、意外事 故、人为操作、负荷过载、网架缺陷以及网络攻击 等各个方面,涉及国内外不同影响程度;(2)典型 性:事故案例在行业内部知晓程度较高,具有一定 的示范性,且事故演化过程大多涉及电力空间和 信息空间的交互。

(2) 计算综合影响矩阵 T

选择对于电力 CPS 事故致因过程有深入研究 的专家 20 名 在分析上述案例库中事故案例发展 演化过程基础上,发放《电力 CPS 事故系统致因因 素相互作用关系打分表》,各位专家根据历史事故 研究处理经验对提取的 32 个致因因素间影响关 系按照较强、强、一般、弱、无 5 个等级分别赋值 4、 3、2、1、0 进行评判,将得到的 20 个直接影响矩阵 进行平均并规范化,采用 MATLAB 进行计算求得 综合影响矩阵 *T*。

(3) 计算中心度和原因度

在各因素综合影响矩阵基础上,计算各事故 致因因素的影响度、被影响度、中心度与原因度等 特征,按照中心度大小进行排序找出关键事故因 素,按照原因度进行区分,划分结果因素和原因因 素。各事故致因因素相互影响特征值如表2所示。

(4) 确定衰减度 λ

考虑各事故因素对自身的影响,在综合影响 矩阵基础上加上单位矩阵,得到整体影响矩阵, 在整体影响矩阵中,所有的因素之间都存在一定 的相互影响关系,矩阵数值大小表征了相对应的 两个事故因素相互影响程度。分别取 $\lambda = 0.04$ 、 $\lambda = 0.08$ 、 $\lambda = 0.12$ 、 $\lambda = 0.16$ 、 $\lambda = 0.20$ 得到五 个各因素之间的可达矩阵,将可达矩阵中因素 a_i 所在行和所在列元素之和视为 a_i 的节点度,得到 各事故致因因素在不同不同 λ 值下的节点度 分布。

	花と 电刀 Tab 2 Analysis of airconv	un of into	以口口杀回 [,] raction betw	旧 上 於响1	可III IE 約10 CPS agoid	1 ont asuco factors	
	事故因素	ande of Inte 影响度	被影响度	中心度	。 原因度	中心度排序	,因素属性
	气象灾害 H ₁₁	2.27	0.02	2.29	2.26	29	原因因素
环境扰动 <i>H</i>	地质灾害 H ₁₂	2.18	0.03	2.21	2.14	30	原因因素
	偶然事件 H ₁₃	2.55	2.44	4.99	0.11	18	原因因素
	人为误操作 H ₂₁	2.76	4.44	7.20	- 1.68	16	结果因素◆
	人为故意破坏 H ₂₂	1.75	0.39	2.14	1.36	31	原因因素
	拒绝服务型攻击 H ₃₁	4.01	0.19	4.20	3.82	19	原因因素
	利用型攻击 H ₃₂	3.49	0.45	3.94	3.05	20	原因因素
	收集信息型攻击 H ₃₃	1.04	0.37	1.42	0.67	32	原因因素
_	一次设备故障 B ₁₁	2.61	5.37	7.99	- 2. 76	12	结果因素◆
	二次系统故障 B ₁₂	4.34	5.38	9.72	-1.04	2	结果因素◆
部件失效 B	一次设备退出工作 B ₂₁	3.09	6.01	9.09	-2.92	6	结果因素◆
_	二次系统退出工作 B ₂₂	4.31	5.99	10.30	- 1. 67	1	结果因素◆
	潮流大范围转移 J11	4.00	5.45	9.45	- 1. 45	4	结果因素◆
	电压、电流崩溃 J ₁₂	3.91	4.90	8.81	- 0. 99	8	结果因素◆
	系统震荡、解列 J_{13}	3.67	4.63	8.29	-0.96	11	结果因素◆
	测量仪器量测偏差 J ₂₁	3.27	4.52	7.78	- 1. 25	13	结果因素◆
	设备、系统误切/投 J ₂₂	3.33	5.63	8.96	-2.29	7	结果因素◆
交互紊乱」	运行参数误调节 J ₂₃	3.37	5.80	9.17	-2.43	5	结果因素◆
	控制与信号系统错误指令 $J_{ m 24}$	4.07	5.50	9.58	-1.43	3	结果因素◆
	保护系统误动作 J_{25}	3.28	5.36	8.64	-2.08	9	结果因素◆
	员工控制指令失当 J ₃₁	3.14	4.48	7.62	-1.34	14	结果因素◆
	系统智能调度失当 J ₃₂	3.55	5.01	8.55	- 1.46	10	结果因素◆
_	网架结构不合理 S ₁₁	2.25	0.54	2.78	1.71	25	原因因素
	设备隐性缺陷 S12	2.73	0.26	2.99	2.47	23	原因因素
适应性衰退 <i>S</i> 一 管理和认知 缺乏 <i>G</i>	设备更新维护不及时 S ₂₁	2.66	0.36	3.01	2.30	22	原因因素
	网架升级滞后 S ₂₂	2.65	0.43	3.07	2.22	21	原因因素
	数据库信息不确定性 G ₁₁	2.80	4. 57	7.36	- 1. 77	15	结果因素◆
	数据实时传输不及时 G ₁₂	2.17	3.63	5.79	-1.46	17	结果因素
	模型方法库存在缺陷 G ₂₁	1.50	1.41	2.91	0.09	24	原因因素
	设备研发存在瓶颈 G22	2.23	0.18	2.41	2.04	28	原因因素
	组织制度缺失 G ₃₁	2.57	0.06	2.63	2.51	27	原因因素
	激励监督不到位 G32	2.51	0.27	2.77	2.24	26	原因因素

表 2 电力 CPS 事故致因因素间相互影响特征值统计

注: ♦ 为关键因素

将不同 λ 下事故因素节点度进行重新排列, 并绘制不同 λ 下节点度衰减图如图 2 所示。在不 同 λ 下各事故因素节点度不同,所有 32 个事故因 素节点度衰减程度也不同,根据以下两条原则进 行 λ 取值:一是在所取 λ 下事故因素节点度适中 且相互关系符合实际情况;二是基本确保节点度 较大的事故因素在 DEMATEL 方法确定的关键因 素之中。图 2 和图 3 分别是不同 λ 下节点衰减三 维曲面图和重要 λ 下节点衰减散点图。从图中可 以看出 根据以上原则 选取 $\lambda = 0.12$ 为衰减度较 为合适。

将 $\lambda = 0.12$ 时各事故因素节点度变化做成曲 线图如图 4 所示。由图可知, $\lambda = 0.12$ 时节点度 最大的 16 个事故因素与 DETAMEL 法确定的 16

图 2 不同 λ 下节点衰减三维曲面图

Fig. 2 Node attenuation 3D surface map in different λ

个关键因素完全一致,且节点度远高于剩余事故 因素,证明取λ = 0.12为衰减度具有一定合理性; 对各因素节点度进行排序并与各因素中心度排序 做对比可知,各关键因素节点度排序和中心度排 序具有一定差异,说明基于 DETAMEL 法和中心度 确定的关键因素的重要性程度并非完全一致。

图 4 $\lambda = 0.12$ 各事故因素节点度变化曲线

Fig. 4 Change curve of accident factors node degree when $\lambda = 0.12$

(5)事故致因因素分层

在 λ = 0.12 时,根据公式(8) 计算得到可达 矩阵 K,通过公式(9) 和(10) 对可达矩阵中各影 响因素进行循环分层,可得到32 个影响因素共可 分为5层。

32 个致因因素划分层次依次为 第一层 { H₃₃ B₁₁ B₁₂ B₂₁ B₂₂ J₁₁ J₁₂ J₁₃ J₂₁ J₂₂ J₂₃, J₂₅ J₃₁ J₃₂ }; 第二层 { H₁₂ J₂₄ }; 第三层 { H₂₁ H₂₂ G₁₁ G₂₁ G₂₂ G₃₂ }; 第四层 { G₁₂ G₃₁ }; 第五层 { H₁₁ H₁₃ H₃₁ H₃₂ S₁₁ S₁₂ S₂₁ S₂₂ }。

4 讨论分析

通过上述计算从故障致因因素关系、复杂网 络结构以及层级划分结构几个角度对电力 CPS 系 统故障致因过程进行分析。

(1) 电力 CPS 系统故障致因因素特点分析

以电力 CPS 故障致因因素中心度为横坐标, 原因度为纵坐标绘制各故障致因因素原因 – 结果 分布图如图 5 所示。其中,原因度大于零的因素 为原因因素,原因度小于零的因素为结果因素;中 心度越大因素在故障过程越重要,将中心度最大 的 16 个致因因素定义为关键因素。

sult graph

据图可得到以下结论: (1) 电力 CPS 故障致因 因素中中心度较大的关键因素都是结果因素,而 原因因素普遍中心度较小,说明在电力 CPS 故障 演化过程中,网络攻击、自然灾害等原因因素只是 故障演化的缘起因素,引发过程简单,众多结果因 素相互影响是导致故障大范围发生的关键原因; (2)引发故障的所有原因因素中心度差别不大,没 有中心度明显较大的关键原因因素,说明相较于 传统电力系统,电力 CPS 面临的原因致因因素更 加复杂多样,来自于信息层面和管理层面的各风 险因素都很容易引发电力 CPS 故障的进一步演 化。

(2) 电力 CPS 系统事故因素复杂网络结构分 析

对所有 32 个电力 CPS 故障致因因素相互关 系以点、线形式进行表示,得到电力 CPS 故障致因 因素复杂网络结构图如图 6 所示,图中蓝色线为 从节点引出线,表示出度,红色线为指向节点,表 示入度,节点入度越大,重要性越大,节点面积越 大、颜色越深。

由图可得到以下结论:(1)电力 CPS 故障致因 因素复杂网络图中原因因素和结果因素间界限清 晰,但各结果因素间交互复杂,关键因素中存在8 到9个因素关系紧密,相互之间可频繁相互影响, 造成系统的迅速崩溃;(2)电力 CPS 故障致因因素 复杂网络最大直径为3,平均路径为1.24,网络直 径较小 表现较强的小世界网络特征,故障因素间 容易迅速相互影响引起故障的进一步演化;(3)网 络中节点的最大入度为30,说明许多关键因素节 点与大部分因素节点存在致因关系,因素节点间 关系紧密,许多原因因素可直接影响关键因素节 点进而引发故障深入演化,对系统的原因因素等 间接致因因素进行防控是有效避免大面积崩溃的 关键。 (3) 电力 CPS 系统事故因素层次结构分析

对造成电力 CPS 故障的 32 个致因因素按照 ISM 法进行分层,得到电力 CPS 事故因素递阶层 次结构图如图 7 所示,图中所有致因因素共分为 5 层 红色因素为关键因素。

由图可得到以下结论: (1) 导致电力 CPS 系统 事故故障的 32 个因素大致可分为 5 个层次,系统 环境扰动、适应性衰退以及管理和认知缺乏等因 素大部分处于层次结构底层,是造成电力 CPS 系 统故障的间接致因因素,而部件失效、交互紊乱等 因素多处于致因因素上层,是造成电力 CPS 大规 模故障的直接致因因素; (2) 导致电力 CPS 大规模 故障关键致因因素大部分分布于层级1 少量分布 于层级2和层级3 表层级1中致因因素间关系复 杂,一旦发生风险容易迅速相互传递,通过对较低 层级关键因素进行控制是避免大规模故障的关 键; (3) 在所有因素中, 只有地质灾害等少数外部 因素可直接引发系统大规模崩溃,由外部攻击导 致的信息不确定进而导致控制与信号系统发出错 误指令将是电力和信息深度融合趋势下的故障致 因关键路径。

5 结 论

本文主要从复杂事故系统角度研究电力 CPS 故障过程中风险相互扰动关系及结构关系。通过 对故障致因因素梳理及各因素间层次结构和网络 结构的分析,得出电力信息融合下风险因素间关 系更加紧密、更容易引发大范围崩溃。

电力信息的深度融合是能源互联网的重要发 展趋势,针对电力信息风险传递的相关建模研究 也处于起步探索阶段。本文与相关研究成果相 比,在研究侧重点、研究结论等方面有一定的区别 和创新:(1)本文将整个电力 CPS 作为一个复杂事 故系统对风险因素间的相互关系及动力机制进行 分析,与其他方法相比,更加注重风险的系统性和 全面性;(2)较多研究证明电力信息融合趋势下, 小的扰动会造成系统的大面积崩溃,本文在此基 础上进一步说明了在电力 CPS 风险传递过程中, 一些原因因素只是故障演化缘起因素,一些次生 的结果风险因素的相互扰动是风险大面积扩散的 关键;(3)本文建立了电力 CPS 风险致因因素间相 互扰动的复杂网络模型,电力 CPS 致因因素复杂

图 7 电力 CPS 事故致因递阶层次结构图

Fig. 7 Power CPS accident cause factor hierarchical structure chart

网络平均直径较小、最大入度较大,各风险因素间 关系紧密,容易引起迅速的大范围崩溃。

参考文献:

[1]汤奕,王琦,倪明,等. 电力信息物理融合系统中的网络攻击分析 [J]. 电力系统自动化,2016,40
 (6): 148-151.

TANG Y , WANG Q , NI M , et al. Analysis of Cyber Attacks in Cyber Physical Power System [J]. Automation of Electric Power Systems , 2016 , 40 (6) : 148 - 151.

- [2] YAN J, GOVINDARASY M, LIU C C, et al. Risk assessment framework for power control systems with PMU-based intrusion response system [J]. Journal of Modern Power Systems & Clean Energy, 2015, 3 (3): 321-331.
- [3] XUE Y. Energy Internet or comprehensive energy network?
 [J]. Journal of Modern Power Systems and Clean Energy, 2015, 3 (3): 297-301.
- [4] HAN Y, WEN Y, GUO C, et al. Incorporating cyber layer failures in composite power system reliability evaluation [J]. Energies ,2015, 8 (9): 9094-9086.

[5]李存斌,李小鹏,田世明,等. 能源互联网电力信息深度融合风险传递:挑战与展望[J]. 电力系统自动化,2017,41(11):17-25.
LICB,LIXP,TIANSM,et al. Challenges and Prospects of Risk Transmission in Electric Power and In-

Prospects of Risk Transmission in Electric Power and Information Depth Fusion for Energy Internet [J]. Automation of Electric Power Systems ,2017 , 41 (11): 17 -25.

- [6]俞斌,郭创新,王越,等.考虑信息系统作用的电力系统可靠性研究[J].电力系统保护与控制,2013,41(7):7-13.
 YUB,GUOCX,WANGY. Research on the Reliability of the Power System Considering Impacts of the Information System [J]. Power System Protection and Control,2013,41(7):7-13.
- [7]汤奕,韩啸,吴英俊,等. 考虑通讯系统影响的电 力系统综合脆弱性评估 [J]. 中国电机工程学报, 2015,35 (23): 6066 - 6074.
 TANG Y, HAN X, WU Y J, et al. Electric Power System Vulnerability Assessment Considering the Influence of Communication System [J]. Proceedings of the CSEE, 2015,35 (23): 6066 - 6074.
- [8] 叶夏明,赵俊华,文福拴.基于邻接矩阵的电力信

息系统脆弱性定量评估 [J]. 电力系统自动化, 2013,37(22):41-46.

YE X M , ZHAO J H , WEN F S. Quantitative Vulnerability Assessment for Power Information System Based on Adjacency Matrix [J]. Automation of Electric Power Systems , 2013 , 37 (22): 41 – 46.

- [9]叶夏明. 电力信息物理系统通信网络性能分析及网络安全评估 [D]. 杭州:浙江大学,2015.
 YE X M. Performance analysis of communication Networks and cyber security assessment of power systems [D]. Hangzhou: Zhejiang University,2015.
- [10] SRIDHAR S , HAHN A , GOVINDARASU M. Cyberphysical system security for the electric power grid [J]. Proceedings of the IEEE , 2012 , 100 (1): 210 -224.
- [11] BURMESTER M, MAGKOS E, CHRISSIKOPOULOS V. Modeling security in cyber-physical systems [J]. International Journal of Critical Infrastructure Protection, 2012, 5 (4): 118-126.
- [12] RASSAEI Farshad, SOH WeeSeng, CHUA KeeChaing. Demand Response for Residential Electric Vehicles With Random Usage Patterns in Smart Grids [J]. IEEE Transactions on Sustainable Energy, 2015, 6 (4): 1367-1376.
- [13] 王先培,田猛,董政呈,等.通信光缆故障对电力 网连锁故障的影响 [J].电力系统自动化,2015, 39 (13): 58-62.
 WANG X P, TIAN M, DONG Z C, et al. Parallel Complete Algorithm for Solving Switching Angles of

SHEPWN Inverters [J]. Automation of Electric Power Systems ,2015 , 39 (13): 58 – 62.

- [14] 严佳梅,许剑冰,倪明,等.通信系统中断对电网 广域保护控制系统的影响 [J].电力系统自动化, 2016,40(5):17-24.
 YAN J M, XU J B, NI M, et al. Impact of Communication System Interruption on Power System Wide Area Protection and Control System [J]. Automation of Electric Power Systems, 2016,40(5):17-24.
- [15] LEE Sang Hun, KIM Hee Eun, SON Kwang Seop. Reliability modeling of safety-critical network communication in a digitalized nuclear power plant [J]. Reliability Engineering & System Safety, 2015, 14 (4): 285 – 295.
- [16] ZHU Yihai , YAN Jun , TANG Yufei. Joint Substation– Transmission Line Vulnerability Assessment Against the Smart Grid [J]. IEEE Transaction on Information Fo– rensics and Security , 2015 , 10 (5): 1010 – 1024.

[17] 曹一家,张宇栋,包哲静. 电力系统和通信网络交 互影响下的连锁故障分析 [J]. 电力自动化设备, 2013,33 (1):7-11.
CAO Y J, ZHANG Y D, BAO Z J. Analysis of Cascading Failures Under Interactions Between Power Grid

ding Failures Under Interactions Between Power Grid and Communication Network [J]. Electric Power Automation Equipment , 2013 , 33 (1): 7 – 11.

- [18] CAI Ye, CAO Yijia, LI Yong. Cascading Failure Analysis Considering Interaction Between Power Grids and Communication Networks [J]. IEEE Transactions on Smart Grid, 2016, 7 (1): 630-538.
- [19] 叶夏明,文福拴,尚金成,等. 电力系统中信息物 理安全风险传播机制 [J]. 电网技术,2015,39 (11): 3072-3079.
 YE X M, WEN F S, SHANG J C. Propagation Mechanism of Cyber Physical Security Risks in Power Systems [J]. Power System Technology, 2015,39 (11): 3072

- 3079.
[20] 韩宇奇,郭创新,朱炳铨,等.基于改进渗流理论的信息物理融合电力系统连锁故障模型 [J].电力系统自动化,2016,40 (17):30-37.
HAN Y Q,GUO C X,ZHU B Q. Modeling Cascading Failures in Cyber Physical Power System Based on Improved Percolation Theory [J]. Automation of Electric Power Systems,2016,40 (17): 30-37.

[21] 冀星沛,王波,刘涤尘,等.相依网络理论及其在 电力信息-物理系统结构脆弱性分析中的应用综述
[J].中国电机工程学报,2016,36(17):4521-4533.

JI X P, WANG B, LIU D C, et al. Review on Independent Networks Theory and Its Application in the Structural Vulnerability Analysis of Electrical Cyberphysical System [J]. Proceeding of the CSEE, 2016, 36 (17): 4521-4533.

[22] 王宇飞,高昆仑,赵婷.基于改进攻击图的电力信息物理系统跨空间连锁故障危害评估[J].中国电机工程学报,2016,36(6):1490-1499.
WANG Y F,GAO K L,ZHAO T. Assessing the Harmfulness of Cascading Failures Across Space in Electric Cyber-Physical System Based on Improved Attack Graph [J]. Proceedings of the CSEE,2016,36(6):1490-1499.

作者简介: 李小鹏(1990-),男,博士研究生,研究方向 为能源互联网风险管理; 李存斌(1959-),男,教授,博士生 导师,研究方向为电力系统风险传递、信息管理与决策等; 刘定 (1993-),男,博士研究生,研究方向为能源大数据挖掘。

附表 1	电力 CPS 案例库
------	------------

Tab. 1 Power CPS case library 电力 CPS 事故案例库 事故风险源 2002 年 8 月日本茨城县台风高压输电塔连续倒塌事故 1 台风 2 2003 年 8 月美国和加拿大东部地区高压电缆下垂触到树枝而短路事故 意外事故 2003 年 8 月伦敦市中心大停电 3 负荷过载 4 2003年9月意大利全国大停电 网架缺陷 5 2005年9月美国东部飓风破坏电力系统事故 飓风 2005年1月瑞典西南部飓风导致大面积停电 飓风 6 2005 年华中电网盲调事故 人员操作 7 2006年9月海南台风导致海南电网全网崩溃 8 台风 2006年6月福建南平强降水影响闽北、闽东电网 强降水 9 2008 年 5 月四川汶川地震导致四川西北部电力系统瘫痪 10 地震 11 2008 年初南方地区冰雪电力线路的群发性停运 冰灾 2009年2月湖南山火造成线路跳闸事故 山火 12 2009 年 8 月河北滦县暴风造成大面积停电 暴风 13 14 2009年11月巴西里约热内卢、圣保罗闪电暴雨6000万人受到停电影响 闪电 2010年伊朗震网病毒入侵核电站 病毒入侵 15 2011年3月日本福岛地震、海啸引发大面积供电瘫痪 海啸 16 17 2012年7月印度高温造成电力设施因负荷过重、设备过热而崩溃 高温 2014年9月海南三亚台风造成大面积停电 台风 18 2015 年 10 月乌克兰 "BlackEnergy" 恶意软件入侵国家电网 19 恶意攻击 20 2016年6月江苏盐城龙卷风大面积停电 龙卷风