特征结构的计算与说明
原始矩阵(直接影响矩阵)为
$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{11 \times11}} &A1 &A2 &B1 &B2 &C1 &C2 &C3 &C4 &D1 &D2 &D3\\ \hline A1 &0 &50 &12 &46 &43 &34 &38 &24 &45 &23 &40\\ \hline A2 &51 &0 &17 &34 &21 &30 &47 &16 &12 &4 &7\\ \hline B1 &18 &23 &0 &39 &51 &34 &32 &19 &36 &42 &29\\ \hline B2 &24 &16 &16 &0 &45 &45 &24 &30 &36 &28 &33\\ \hline C1 &25 &20 &18 &21 &0 &36 &16 &21 &33 &25 &31\\ \hline C2 &19 &15 &45 &30 &32 &0 &14 &18 &23 &29 &25\\ \hline C3 &21 &13 &25 &37 &29 &27 &0 &28 &36 &32 &32\\ \hline C4 &32 &22 &21 &38 &31 &31 &36 &0 &31 &28 &27\\ \hline D1 &18 &11 &50 &21 &35 &50 &26 &33 &0 &31 &30\\ \hline D2 &14 &17 &27 &24 &23 &27 &36 &19 &35 &0 &17\\ \hline D3 &20 &16 &26 &15 &20 &23 &27 &15 &22 &29 &0\\ \hline \end{array} $$
规范直接关系矩阵求解过程 $$ \require{cancel} \require{AMScd} \begin{CD} O @>>>N \\ \end{CD} $$
- $$\mathcal{N}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{11 \times11}} &A1 &A2 &B1 &B2 &C1 &C2 &C3 &C4 &D1 &D2 &D3\\ \hline A1 &0 &0.141 &0.034 &0.13 &0.121 &0.096 &0.107 &0.068 &0.127 &0.065 &0.113\\ \hline A2 &0.144 &0 &0.048 &0.096 &0.059 &0.085 &0.132 &0.045 &0.034 &0.011 &0.02\\ \hline B1 &0.051 &0.065 &0 &0.11 &0.144 &0.096 &0.09 &0.054 &0.101 &0.118 &0.082\\ \hline B2 &0.068 &0.045 &0.045 &0 &0.127 &0.127 &0.068 &0.085 &0.101 &0.079 &0.093\\ \hline C1 &0.07 &0.056 &0.051 &0.059 &0 &0.101 &0.045 &0.059 &0.093 &0.07 &0.087\\ \hline C2 &0.054 &0.042 &0.127 &0.085 &0.09 &0 &0.039 &0.051 &0.065 &0.082 &0.07\\ \hline C3 &0.059 &0.037 &0.07 &0.104 &0.082 &0.076 &0 &0.079 &0.101 &0.09 &0.09\\ \hline C4 &0.09 &0.062 &0.059 &0.107 &0.087 &0.087 &0.101 &0 &0.087 &0.079 &0.076\\ \hline D1 &0.051 &0.031 &0.141 &0.059 &0.099 &0.141 &0.073 &0.093 &0 &0.087 &0.085\\ \hline D2 &0.039 &0.048 &0.076 &0.068 &0.065 &0.076 &0.101 &0.054 &0.099 &0 &0.048\\ \hline D3 &0.056 &0.045 &0.073 &0.042 &0.056 &0.065 &0.076 &0.042 &0.062 &0.082 &0\\ \hline \end{array} $$
综合影响矩阵求解过程 $$\begin{CD} N @>>>T \\ \end{CD} $$
综合影响矩阵如下
$T=\mathcal{N}(I-\mathcal{N})^{-1}$
$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{11 \times11}} &A1 &A2 &B1 &B2 &C1 &C2 &C3 &C4 &D1 &D2 &D3\\ \hline A1 &0.273 &0.355 &0.337 &0.452 &0.479 &0.47 &0.42 &0.324 &0.462 &0.372 &0.414\\ \hline A2 &0.327 &0.171 &0.26 &0.338 &0.329 &0.354 &0.354 &0.233 &0.291 &0.24 &0.252\\ \hline B1 &0.292 &0.267 &0.278 &0.405 &0.468 &0.437 &0.375 &0.289 &0.413 &0.396 &0.361\\ \hline B2 &0.289 &0.236 &0.303 &0.283 &0.428 &0.437 &0.333 &0.298 &0.389 &0.34 &0.351\\ \hline C1 &0.257 &0.216 &0.268 &0.296 &0.265 &0.365 &0.273 &0.241 &0.334 &0.291 &0.304\\ \hline C2 &0.245 &0.208 &0.336 &0.324 &0.358 &0.28 &0.274 &0.238 &0.318 &0.309 &0.295\\ \hline C3 &0.271 &0.219 &0.313 &0.366 &0.377 &0.381 &0.26 &0.284 &0.377 &0.34 &0.338\\ \hline C4 &0.313 &0.255 &0.316 &0.388 &0.401 &0.409 &0.369 &0.224 &0.383 &0.344 &0.341\\ \hline D1 &0.28 &0.23 &0.396 &0.352 &0.418 &0.459 &0.348 &0.311 &0.308 &0.361 &0.353\\ \hline D2 &0.225 &0.204 &0.286 &0.3 &0.323 &0.339 &0.318 &0.234 &0.337 &0.223 &0.266\\ \hline D3 &0.22 &0.186 &0.259 &0.253 &0.287 &0.299 &0.273 &0.203 &0.279 &0.274 &0.196\\ \hline \end{array} $$