流程图


输入

直接影响矩阵

参数设置

第一、归一化方法的设置

第二、截距值的获得

输出结果

第一、一组成对的对抗层级拓扑图

第二、带综合影响值的MR的直角坐标几何分布图

选择规范化方式

选择截距方式

原始矩阵(直接影响矩阵)为


$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{13 \times13}} &S1 &S2 &S3 &S4 &S5 &S6 &S7 &S8 &S9 &S10 &S11 &S12 &S13\\ \hline S1 &0 &10 &11 &10 &21 &25 &13 &20 &29 &25 &24 &18 &27\\ \hline S2 &13 &0 &14 &6 &19 &21 &23 &16 &10 &18 &20 &15 &29\\ \hline S3 &17 &10 &0 &20 &24 &29 &16 &29 &30 &34 &27 &18 &26\\ \hline S4 &16 &11 &11 &0 &18 &9 &4 &18 &8 &12 &14 &15 &12\\ \hline S5 &11 &13 &24 &16 &0 &19 &11 &13 &24 &35 &18 &15 &29\\ \hline S6 &10 &15 &17 &30 &26 &0 &11 &12 &11 &26 &25 &14 &29\\ \hline S7 &13 &13 &7 &13 &6 &15 &0 &10 &6 &19 &22 &13 &16\\ \hline S8 &15 &15 &18 &10 &13 &11 &7 &0 &26 &14 &15 &19 &26\\ \hline S9 &22 &17 &29 &12 &30 &21 &6 &29 &0 &34 &19 &16 &26\\ \hline S10 &14 &7 &29 &29 &12 &18 &8 &25 &34 &0 &10 &33 &26\\ \hline S11 &14 &7 &10 &22 &16 &22 &5 &20 &26 &24 &0 &19 &30\\ \hline S12 &17 &14 &15 &6 &10 &3 &7 &23 &24 &19 &15 &0 &6\\ \hline S13 &23 &22 &26 &23 &20 &15 &12 &30 &27 &29 &24 &20 &0\\ \hline \end{array} $$

规范直接关系矩阵求解过程 $$ \require{cancel} \require{AMScd} \begin{CD} O @>>>N \\ \end{CD} $$


  • $$\mathcal{N}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{13 \times13}} &S1 &S2 &S3 &S4 &S5 &S6 &S7 &S8 &S9 &S10 &S11 &S12 &S13\\ \hline S1 &0 &0.035 &0.038 &0.035 &0.073 &0.087 &0.045 &0.069 &0.1 &0.087 &0.083 &0.062 &0.093\\ \hline S2 &0.045 &0 &0.048 &0.021 &0.066 &0.073 &0.08 &0.055 &0.035 &0.062 &0.069 &0.052 &0.1\\ \hline S3 &0.059 &0.035 &0 &0.069 &0.083 &0.1 &0.055 &0.1 &0.104 &0.118 &0.093 &0.062 &0.09\\ \hline S4 &0.055 &0.038 &0.038 &0 &0.062 &0.031 &0.014 &0.062 &0.028 &0.042 &0.048 &0.052 &0.042\\ \hline S5 &0.038 &0.045 &0.083 &0.055 &0 &0.066 &0.038 &0.045 &0.083 &0.121 &0.062 &0.052 &0.1\\ \hline S6 &0.035 &0.052 &0.059 &0.104 &0.09 &0 &0.038 &0.042 &0.038 &0.09 &0.087 &0.048 &0.1\\ \hline S7 &0.045 &0.045 &0.024 &0.045 &0.021 &0.052 &0 &0.035 &0.021 &0.066 &0.076 &0.045 &0.055\\ \hline S8 &0.052 &0.052 &0.062 &0.035 &0.045 &0.038 &0.024 &0 &0.09 &0.048 &0.052 &0.066 &0.09\\ \hline S9 &0.076 &0.059 &0.1 &0.042 &0.104 &0.073 &0.021 &0.1 &0 &0.118 &0.066 &0.055 &0.09\\ \hline S10 &0.048 &0.024 &0.1 &0.1 &0.042 &0.062 &0.028 &0.087 &0.118 &0 &0.035 &0.114 &0.09\\ \hline S11 &0.048 &0.024 &0.035 &0.076 &0.055 &0.076 &0.017 &0.069 &0.09 &0.083 &0 &0.066 &0.104\\ \hline S12 &0.059 &0.048 &0.052 &0.021 &0.035 &0.01 &0.024 &0.08 &0.083 &0.066 &0.052 &0 &0.021\\ \hline S13 &0.08 &0.076 &0.09 &0.08 &0.069 &0.052 &0.042 &0.104 &0.093 &0.1 &0.083 &0.069 &0\\ \hline \end{array} $$

综合影响矩阵求解过程 $$\begin{CD} N @>>>T \\ \end{CD} $$


  综合影响矩阵如下

$T=\mathcal{N}(I-\mathcal{N})^{-1}$

$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{13 \times13}} &S1 &S2 &S3 &S4 &S5 &S6 &S7 &S8 &S9 &S10 &S11 &S12 &S13\\ \hline S1 &0.179 &0.183 &0.249 &0.228 &0.274 &0.275 &0.156 &0.303 &0.343 &0.352 &0.291 &0.267 &0.349\\ \hline S2 &0.198 &0.13 &0.227 &0.19 &0.238 &0.237 &0.175 &0.257 &0.25 &0.294 &0.252 &0.23 &0.32\\ \hline S3 &0.266 &0.209 &0.249 &0.295 &0.319 &0.322 &0.185 &0.372 &0.391 &0.427 &0.338 &0.305 &0.393\\ \hline S4 &0.165 &0.13 &0.169 &0.121 &0.188 &0.154 &0.087 &0.209 &0.187 &0.211 &0.182 &0.181 &0.207\\ \hline S5 &0.215 &0.19 &0.288 &0.246 &0.204 &0.255 &0.149 &0.281 &0.326 &0.38 &0.27 &0.257 &0.352\\ \hline S6 &0.204 &0.19 &0.255 &0.282 &0.278 &0.185 &0.145 &0.266 &0.274 &0.34 &0.283 &0.245 &0.341\\ \hline S7 &0.158 &0.138 &0.158 &0.169 &0.152 &0.175 &0.074 &0.187 &0.182 &0.235 &0.209 &0.179 &0.222\\ \hline S8 &0.198 &0.173 &0.234 &0.191 &0.214 &0.198 &0.119 &0.199 &0.291 &0.271 &0.227 &0.233 &0.3\\ \hline S9 &0.271 &0.222 &0.331 &0.258 &0.327 &0.289 &0.15 &0.36 &0.286 &0.413 &0.302 &0.289 &0.381\\ \hline S10 &0.233 &0.179 &0.311 &0.289 &0.254 &0.257 &0.143 &0.329 &0.366 &0.279 &0.255 &0.319 &0.35\\ \hline S11 &0.212 &0.162 &0.23 &0.25 &0.243 &0.248 &0.121 &0.285 &0.314 &0.326 &0.196 &0.254 &0.336\\ \hline S12 &0.18 &0.148 &0.196 &0.151 &0.176 &0.148 &0.103 &0.24 &0.253 &0.249 &0.197 &0.145 &0.205\\ \hline S13 &0.277 &0.239 &0.322 &0.291 &0.298 &0.272 &0.169 &0.366 &0.371 &0.399 &0.319 &0.302 &0.299\\ \hline \end{array} $$

区段截取的处理


$T$的相关统计数据求解

平均数,均值 $\bar{x}$ 

$\bar{x}= 0.24513015399682 $

总体标准差$\sigma=\sqrt { \frac {\sum \limits_{i=1}^{n^2} ({x_i-\bar{x}})^2 }{n^2} } $ ( $n$为要素的数目)

$\sigma = 0.072488497687026 $

样本标准差一:$S=\sqrt { \frac {\sum \limits_{i=1}^{n^2} ({x_i-\bar{x}})^2 }{n^2-1} }$ ( $n$为要素的数目)

$S = 0.072703917174378 $

样本标准差二:$ \bar {S}=\sqrt { \frac {\sum \limits_{i=1}^{n^2} ({x_i-\bar{x}})^2 }{n^2-n} } $ ( $n$为要素的数目)

$ \bar {S}= 0.07544842049373 $

标准误差 $\sigma_{s}= \frac {\sigma}{n }$ ( $n$为要素的数目)

$\sigma_{s}= 0.018856165692063 $

方差 $ {\sigma}^{2}= \sigma ^{2} $

$\sigma^{2}= 0.0052545822969219 $

选择的截距方式为:$\lambda= \bar{x}+ \sigma$

$\lambda=0.31761865168385 $

\begin{CD} T@>\lambda=0.31761865168385>> A \\ \end{CD}

$$ a_{ij}= \begin{cases} 1 , \text{ $e_i$}\rightarrow \text{$e_j$ 当: $ t_{ij} > \lambda=0.31761865168385 $} \\ 0, \text{ $e_i$}\rightarrow \text{$e_j$ 当: $ t_{ij} < \lambda=0.31761865168385 $} \end{cases} $$

$\lambda= 0.31761865168385$ 截取后的关系矩阵$ A$

$$ A=\begin{array}{c|c|c|c|c|c|c}{M_{13 \times13}} &S1 &S2 &S3 &S4 &S5 &S6 &S7 &S8 &S9 &S10 &S11 &S12 &S13\\ \hline S1 &0 &0 &0 &0 &0 &0 &0 &0 &1 &1 &0 &0 &1\\ \hline S2 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline S3 &0 &0 &0 &0 &1 &1 &0 &1 &1 &1 &1 &0 &1\\ \hline S4 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline S5 &0 &0 &0 &0 &0 &0 &0 &0 &1 &1 &0 &0 &1\\ \hline S6 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &1\\ \hline S7 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline S8 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline S9 &0 &0 &1 &0 &1 &0 &0 &1 &0 &1 &0 &0 &1\\ \hline S10 &0 &0 &0 &0 &0 &0 &0 &1 &1 &0 &0 &1 &1\\ \hline S11 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &1\\ \hline S12 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline S13 &0 &0 &1 &0 &0 &0 &0 &1 &1 &1 &1 &0 &0\\ \hline \end{array} $$