流程图
输入
直接影响矩阵
参数设置
第一、归一化方法的设置
第二、截距值的获得
输出结果
第一、一组成对的对抗层级拓扑图
第二、带综合影响值的MR的直角坐标几何分布图
原始矩阵(直接影响矩阵)为
$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{13 \times13}} &S1 &S2 &S3 &S4 &S5 &S6 &S7 &S8 &S9 &S10 &S11 &S12 &S13\\ \hline S1 &0 &10 &11 &10 &21 &25 &13 &20 &29 &25 &24 &18 &27\\ \hline S2 &13 &0 &14 &6 &19 &21 &23 &16 &10 &18 &20 &15 &29\\ \hline S3 &17 &10 &0 &20 &24 &29 &16 &29 &30 &34 &27 &18 &26\\ \hline S4 &16 &11 &11 &0 &18 &9 &4 &18 &8 &12 &14 &15 &12\\ \hline S5 &11 &13 &24 &16 &0 &19 &11 &13 &24 &35 &18 &15 &29\\ \hline S6 &10 &15 &17 &30 &26 &0 &11 &12 &11 &26 &25 &14 &29\\ \hline S7 &13 &13 &7 &13 &6 &15 &0 &10 &6 &19 &22 &13 &16\\ \hline S8 &15 &15 &18 &10 &13 &11 &7 &0 &26 &14 &15 &19 &26\\ \hline S9 &22 &17 &29 &12 &30 &21 &6 &29 &0 &34 &19 &16 &26\\ \hline S10 &14 &7 &29 &29 &12 &18 &8 &25 &34 &0 &10 &33 &26\\ \hline S11 &14 &7 &10 &22 &16 &22 &5 &20 &26 &24 &0 &19 &30\\ \hline S12 &17 &14 &15 &6 &10 &3 &7 &23 &24 &19 &15 &0 &6\\ \hline S13 &23 &22 &26 &23 &20 &15 &12 &30 &27 &29 &24 &20 &0\\ \hline \end{array} $$
规范直接关系矩阵求解过程 $$ \require{cancel} \require{AMScd} \begin{CD} O @>>>N \\ \end{CD} $$
- $$\mathcal{N}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{13 \times13}} &S1 &S2 &S3 &S4 &S5 &S6 &S7 &S8 &S9 &S10 &S11 &S12 &S13\\ \hline S1 &0 &0.036 &0.039 &0.036 &0.075 &0.089 &0.046 &0.071 &0.104 &0.089 &0.086 &0.064 &0.096\\ \hline S2 &0.046 &0 &0.05 &0.021 &0.068 &0.075 &0.082 &0.057 &0.036 &0.064 &0.071 &0.054 &0.104\\ \hline S3 &0.061 &0.036 &0 &0.071 &0.086 &0.104 &0.057 &0.104 &0.107 &0.121 &0.096 &0.064 &0.093\\ \hline S4 &0.057 &0.039 &0.039 &0 &0.064 &0.032 &0.014 &0.064 &0.029 &0.043 &0.05 &0.054 &0.043\\ \hline S5 &0.039 &0.046 &0.086 &0.057 &0 &0.068 &0.039 &0.046 &0.086 &0.125 &0.064 &0.054 &0.104\\ \hline S6 &0.036 &0.054 &0.061 &0.107 &0.093 &0 &0.039 &0.043 &0.039 &0.093 &0.089 &0.05 &0.104\\ \hline S7 &0.046 &0.046 &0.025 &0.046 &0.021 &0.054 &0 &0.036 &0.021 &0.068 &0.079 &0.046 &0.057\\ \hline S8 &0.054 &0.054 &0.064 &0.036 &0.046 &0.039 &0.025 &0 &0.093 &0.05 &0.054 &0.068 &0.093\\ \hline S9 &0.079 &0.061 &0.104 &0.043 &0.107 &0.075 &0.021 &0.104 &0 &0.121 &0.068 &0.057 &0.093\\ \hline S10 &0.05 &0.025 &0.104 &0.104 &0.043 &0.064 &0.029 &0.089 &0.121 &0 &0.036 &0.118 &0.093\\ \hline S11 &0.05 &0.025 &0.036 &0.079 &0.057 &0.079 &0.018 &0.071 &0.093 &0.086 &0 &0.068 &0.107\\ \hline S12 &0.061 &0.05 &0.054 &0.021 &0.036 &0.011 &0.025 &0.082 &0.086 &0.068 &0.054 &0 &0.021\\ \hline S13 &0.082 &0.079 &0.093 &0.082 &0.071 &0.054 &0.043 &0.107 &0.096 &0.104 &0.086 &0.071 &0\\ \hline \end{array} $$
综合影响矩阵求解过程 $$\begin{CD} N @>>>T \\ \end{CD} $$
综合影响矩阵如下
$T=\mathcal{N}(I-\mathcal{N})^{-1}$
$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{13 \times13}} &S1 &S2 &S3 &S4 &S5 &S6 &S7 &S8 &S9 &S10 &S11 &S12 &S13\\ \hline S1 &0.213 &0.212 &0.29 &0.265 &0.314 &0.314 &0.178 &0.349 &0.393 &0.405 &0.333 &0.308 &0.401\\ \hline S2 &0.228 &0.154 &0.263 &0.222 &0.273 &0.271 &0.196 &0.297 &0.291 &0.339 &0.289 &0.265 &0.366\\ \hline S3 &0.307 &0.243 &0.296 &0.339 &0.367 &0.367 &0.211 &0.428 &0.449 &0.489 &0.387 &0.353 &0.454\\ \hline S4 &0.188 &0.149 &0.196 &0.144 &0.215 &0.178 &0.101 &0.239 &0.218 &0.245 &0.208 &0.208 &0.239\\ \hline S5 &0.249 &0.219 &0.33 &0.284 &0.242 &0.293 &0.172 &0.327 &0.375 &0.433 &0.311 &0.298 &0.403\\ \hline S6 &0.237 &0.218 &0.295 &0.319 &0.317 &0.219 &0.166 &0.309 &0.32 &0.39 &0.323 &0.284 &0.39\\ \hline S7 &0.181 &0.158 &0.184 &0.194 &0.178 &0.2 &0.087 &0.216 &0.213 &0.269 &0.238 &0.205 &0.255\\ \hline S8 &0.228 &0.198 &0.268 &0.222 &0.247 &0.23 &0.137 &0.236 &0.332 &0.315 &0.262 &0.268 &0.343\\ \hline S9 &0.311 &0.255 &0.379 &0.301 &0.373 &0.332 &0.175 &0.414 &0.339 &0.474 &0.349 &0.334 &0.439\\ \hline S10 &0.269 &0.208 &0.354 &0.329 &0.295 &0.296 &0.166 &0.377 &0.417 &0.331 &0.297 &0.362 &0.402\\ \hline S11 &0.244 &0.189 &0.267 &0.285 &0.28 &0.284 &0.141 &0.328 &0.36 &0.375 &0.233 &0.292 &0.384\\ \hline S12 &0.205 &0.169 &0.225 &0.177 &0.204 &0.174 &0.118 &0.274 &0.288 &0.286 &0.226 &0.172 &0.24\\ \hline S13 &0.318 &0.272 &0.369 &0.334 &0.344 &0.315 &0.195 &0.42 &0.427 &0.459 &0.367 &0.349 &0.355\\ \hline \end{array} $$
区段截取的处理
$T$的相关统计数据求解
平均数,均值 $\bar{x}$
$\bar{x}= 0.28259478994875 $
总体标准差$\sigma=\sqrt { \frac {\sum \limits_{i=1}^{n^2} ({x_i-\bar{x}})^2 }{n^2} } $ ( $n$为要素的数目)
$\sigma = 0.08266752750736 $
样本标准差一:$S=\sqrt { \frac {\sum \limits_{i=1}^{n^2} ({x_i-\bar{x}})^2 }{n^2-1} }$ ( $n$为要素的数目)
$S = 0.082913196778549 $
样本标准差二:$ \bar {S}=\sqrt { \frac {\sum \limits_{i=1}^{n^2} ({x_i-\bar{x}})^2 }{n^2-n} } $ ( $n$为要素的数目)
$ \bar {S}= 0.086043090636001 $
标准误差 $\sigma_{s}= \frac {\sigma}{n }$ ( $n$为要素的数目)
$\sigma_{s}= 0.021738060765288 $
方差 $ {\sigma}^{2}= \sigma ^{2} $
$\sigma^{2}= 0.0068339201041801 $
选择的截距方式为:$\lambda= \bar{x}+ \bar S$
$\lambda=0.36863788058475 $
\begin{CD} T@>\lambda=0.36863788058475>> A \\ \end{CD}
$$ a_{ij}= \begin{cases} 1 , \text{ $e_i$}\rightarrow \text{$e_j$ 当: $ t_{ij} > \lambda=0.36863788058475 $} \\ 0, \text{ $e_i$}\rightarrow \text{$e_j$ 当: $ t_{ij} < \lambda=0.36863788058475 $} \end{cases} $$
$\lambda= 0.36863788058475$ 截取后的关系矩阵$ A$
$$ A=\begin{array}{c|c|c|c|c|c|c}{M_{13 \times13}} &S1 &S2 &S3 &S4 &S5 &S6 &S7 &S8 &S9 &S10 &S11 &S12 &S13\\ \hline S1 &0 &0 &0 &0 &0 &0 &0 &0 &1 &1 &0 &0 &1\\ \hline S2 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline S3 &0 &0 &0 &0 &0 &0 &0 &1 &1 &1 &1 &0 &1\\ \hline S4 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline S5 &0 &0 &0 &0 &0 &0 &0 &0 &1 &1 &0 &0 &1\\ \hline S6 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &1\\ \hline S7 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline S8 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline S9 &0 &0 &1 &0 &1 &0 &0 &1 &0 &1 &0 &0 &1\\ \hline S10 &0 &0 &0 &0 &0 &0 &0 &1 &1 &0 &0 &0 &1\\ \hline S11 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &1\\ \hline S12 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline S13 &0 &0 &1 &0 &0 &0 &0 &1 &1 &1 &0 &0 &0\\ \hline \end{array} $$