流程图


输入

直接影响矩阵

参数设置

第一、归一化方法的设置

第二、截距值的获得

输出结果

第一、一组成对的对抗层级拓扑图

第二、带综合影响值的MR的直角坐标几何分布图

选择规范化方式

选择截距方式

原始矩阵(直接影响矩阵)为


$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{15 \times15}} &A1 &A2 &A3 &A4 &B1 &B2 &B3 &C1 &C2 &C3 &D1 &D2 &D3 &E1 &E2\\ \hline A1 &0 &41 &30 &36 &44 &40 &32 &35 &41 &25 &41 &33 &35 &45 &42\\ \hline A2 &20 &0 &23 &30 &35 &39 &37 &24 &36 &24 &41 &32 &21 &44 &45\\ \hline A3 &35 &25 &0 &39 &29 &26 &22 &17 &19 &12 &36 &35 &30 &20 &23\\ \hline A4 &10 &20 &15 &0 &36 &34 &30 &24 &23 &10 &40 &35 &20 &30 &33\\ \hline B1 &24 &27 &10 &24 &0 &32 &34 &24 &28 &10 &32 &34 &13 &28 &28\\ \hline B2 &26 &27 &12 &15 &29 &0 &12 &29 &37 &10 &37 &36 &28 &32 &29\\ \hline B3 &14 &13 &10 &36 &37 &20 &0 &10 &37 &11 &36 &35 &14 &30 &30\\ \hline C1 &23 &16 &12 &38 &33 &39 &13 &0 &32 &33 &37 &36 &18 &29 &31\\ \hline C2 &28 &37 &17 &23 &39 &46 &12 &28 &0 &10 &42 &39 &20 &36 &40\\ \hline C3 &10 &25 &11 &18 &11 &15 &37 &36 &40 &0 &39 &30 &13 &17 &27\\ \hline D1 &31 &25 &20 &12 &40 &47 &13 &39 &45 &10 &0 &35 &20 &40 &40\\ \hline D2 &10 &30 &30 &11 &10 &10 &10 &10 &38 &38 &13 &0 &30 &13 &32\\ \hline D3 &33 &15 &33 &39 &21 &20 &16 &23 &22 &20 &30 &36 &0 &27 &25\\ \hline E1 &32 &35 &20 &23 &43 &46 &43 &32 &41 &12 &39 &36 &25 &0 &44\\ \hline E2 &29 &36 &17 &30 &40 &48 &40 &33 &44 &10 &40 &38 &21 &43 &0\\ \hline \end{array} $$

规范直接关系矩阵求解过程 $$ \require{cancel} \require{AMScd} \begin{CD} O @>>>N \\ \end{CD} $$


  • $$\mathcal{N}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{15 \times15}} &A1 &A2 &A3 &A4 &B1 &B2 &B3 &C1 &C2 &C3 &D1 &D2 &D3 &E1 &E2\\ \hline A1 &0 &0.079 &0.058 &0.069 &0.085 &0.077 &0.062 &0.067 &0.079 &0.048 &0.079 &0.063 &0.067 &0.087 &0.081\\ \hline A2 &0.038 &0 &0.044 &0.058 &0.067 &0.075 &0.071 &0.046 &0.069 &0.046 &0.079 &0.062 &0.04 &0.085 &0.087\\ \hline A3 &0.067 &0.048 &0 &0.075 &0.056 &0.05 &0.042 &0.033 &0.037 &0.023 &0.069 &0.067 &0.058 &0.038 &0.044\\ \hline A4 &0.019 &0.038 &0.029 &0 &0.069 &0.065 &0.058 &0.046 &0.044 &0.019 &0.077 &0.067 &0.038 &0.058 &0.063\\ \hline B1 &0.046 &0.052 &0.019 &0.046 &0 &0.062 &0.065 &0.046 &0.054 &0.019 &0.062 &0.065 &0.025 &0.054 &0.054\\ \hline B2 &0.05 &0.052 &0.023 &0.029 &0.056 &0 &0.023 &0.056 &0.071 &0.019 &0.071 &0.069 &0.054 &0.062 &0.056\\ \hline B3 &0.027 &0.025 &0.019 &0.069 &0.071 &0.038 &0 &0.019 &0.071 &0.021 &0.069 &0.067 &0.027 &0.058 &0.058\\ \hline C1 &0.044 &0.031 &0.023 &0.073 &0.063 &0.075 &0.025 &0 &0.062 &0.063 &0.071 &0.069 &0.035 &0.056 &0.06\\ \hline C2 &0.054 &0.071 &0.033 &0.044 &0.075 &0.088 &0.023 &0.054 &0 &0.019 &0.081 &0.075 &0.038 &0.069 &0.077\\ \hline C3 &0.019 &0.048 &0.021 &0.035 &0.021 &0.029 &0.071 &0.069 &0.077 &0 &0.075 &0.058 &0.025 &0.033 &0.052\\ \hline D1 &0.06 &0.048 &0.038 &0.023 &0.077 &0.09 &0.025 &0.075 &0.087 &0.019 &0 &0.067 &0.038 &0.077 &0.077\\ \hline D2 &0.019 &0.058 &0.058 &0.021 &0.019 &0.019 &0.019 &0.019 &0.073 &0.073 &0.025 &0 &0.058 &0.025 &0.062\\ \hline D3 &0.063 &0.029 &0.063 &0.075 &0.04 &0.038 &0.031 &0.044 &0.042 &0.038 &0.058 &0.069 &0 &0.052 &0.048\\ \hline E1 &0.062 &0.067 &0.038 &0.044 &0.083 &0.088 &0.083 &0.062 &0.079 &0.023 &0.075 &0.069 &0.048 &0 &0.085\\ \hline E2 &0.056 &0.069 &0.033 &0.058 &0.077 &0.092 &0.077 &0.063 &0.085 &0.019 &0.077 &0.073 &0.04 &0.083 &0\\ \hline \end{array} $$

综合影响矩阵求解过程 $$\begin{CD} N @>>>T \\ \end{CD} $$


  综合影响矩阵如下

$T=\mathcal{N}(I-\mathcal{N})^{-1}$

$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{15 \times15}} &A1 &A2 &A3 &A4 &B1 &B2 &B3 &C1 &C2 &C3 &D1 &D2 &D3 &E1 &E2\\ \hline A1 &0.177 &0.276 &0.195 &0.257 &0.319 &0.323 &0.242 &0.259 &0.331 &0.171 &0.335 &0.318 &0.229 &0.314 &0.326\\ \hline A2 &0.191 &0.177 &0.163 &0.22 &0.273 &0.289 &0.227 &0.214 &0.291 &0.152 &0.301 &0.283 &0.183 &0.282 &0.299\\ \hline A3 &0.189 &0.19 &0.102 &0.207 &0.224 &0.226 &0.171 &0.171 &0.219 &0.113 &0.251 &0.247 &0.174 &0.204 &0.221\\ \hline A4 &0.142 &0.177 &0.125 &0.131 &0.232 &0.236 &0.181 &0.179 &0.222 &0.106 &0.252 &0.243 &0.152 &0.216 &0.233\\ \hline B1 &0.163 &0.187 &0.115 &0.173 &0.164 &0.229 &0.186 &0.176 &0.228 &0.105 &0.235 &0.237 &0.138 &0.21 &0.222\\ \hline B2 &0.173 &0.194 &0.123 &0.163 &0.223 &0.179 &0.152 &0.192 &0.25 &0.109 &0.251 &0.248 &0.169 &0.224 &0.231\\ \hline B3 &0.14 &0.157 &0.11 &0.187 &0.223 &0.2 &0.119 &0.146 &0.234 &0.101 &0.233 &0.231 &0.133 &0.205 &0.217\\ \hline C1 &0.174 &0.183 &0.128 &0.21 &0.239 &0.258 &0.162 &0.148 &0.252 &0.154 &0.262 &0.259 &0.158 &0.227 &0.244\\ \hline C2 &0.196 &0.233 &0.147 &0.197 &0.266 &0.289 &0.173 &0.211 &0.212 &0.122 &0.288 &0.281 &0.173 &0.256 &0.277\\ \hline C3 &0.131 &0.174 &0.11 &0.155 &0.175 &0.189 &0.182 &0.19 &0.238 &0.081 &0.237 &0.22 &0.129 &0.181 &0.21\\ \hline D1 &0.202 &0.213 &0.152 &0.179 &0.269 &0.291 &0.174 &0.231 &0.292 &0.123 &0.214 &0.275 &0.174 &0.263 &0.277\\ \hline D2 &0.118 &0.168 &0.134 &0.129 &0.151 &0.158 &0.123 &0.129 &0.212 &0.14 &0.171 &0.144 &0.147 &0.154 &0.197\\ \hline D3 &0.183 &0.17 &0.159 &0.205 &0.206 &0.211 &0.158 &0.179 &0.22 &0.126 &0.237 &0.245 &0.117 &0.211 &0.22\\ \hline E1 &0.218 &0.247 &0.164 &0.216 &0.296 &0.311 &0.243 &0.235 &0.309 &0.137 &0.307 &0.3 &0.196 &0.213 &0.306\\ \hline E2 &0.212 &0.248 &0.158 &0.227 &0.29 &0.314 &0.237 &0.236 &0.313 &0.133 &0.308 &0.302 &0.189 &0.289 &0.228\\ \hline \end{array} $$

区段截取的处理


$T$的相关统计数据求解

平均数,均值 $\bar{x}$ 

$\bar{x}= 0.20641543247999 $

总体标准差$\sigma=\sqrt { \frac {\sum \limits_{i=1}^{n^2} ({x_i-\bar{x}})^2 }{n^2} } $ ( $n$为要素的数目)

$\sigma = 0.056801312007258 $

样本标准差一:$S=\sqrt { \frac {\sum \limits_{i=1}^{n^2} ({x_i-\bar{x}})^2 }{n^2-1} }$ ( $n$为要素的数目)

$S = 0.056927959459931 $

样本标准差二:$ \bar {S}=\sqrt { \frac {\sum \limits_{i=1}^{n^2} ({x_i-\bar{x}})^2 }{n^2-n} } $ ( $n$为要素的数目)

$ \bar {S}= 0.058794943712502 $

标准误差 $\sigma_{s}= \frac {\sigma}{n }$ ( $n$为要素的数目)

$\sigma_{s}= 0.013761028831999 $

方差 $ {\sigma}^{2}= \sigma ^{2} $

$\sigma^{2}= 0.0032263890457459 $

选择的截距方式为:$\lambda= \bar{x}+ \sigma^{2}$

$\lambda=0.20964182152573 $

\begin{CD} T@>\lambda=0.20964182152573>> A \\ \end{CD}

$$ a_{ij}= \begin{cases} 1 , \text{ $e_i$}\rightarrow \text{$e_j$ 当: $ t_{ij} > \lambda=0.20964182152573 $} \\ 0, \text{ $e_i$}\rightarrow \text{$e_j$ 当: $ t_{ij} < \lambda=0.20964182152573 $} \end{cases} $$

$\lambda= 0.20964182152573$ 截取后的关系矩阵$ A$

$$ A=\begin{array}{c|c|c|c|c|c|c}{M_{15 \times15}} &A1 &A2 &A3 &A4 &B1 &B2 &B3 &C1 &C2 &C3 &D1 &D2 &D3 &E1 &E2\\ \hline A1 &0 &1 &0 &1 &1 &1 &1 &1 &1 &0 &1 &1 &1 &1 &1\\ \hline A2 &0 &0 &0 &1 &1 &1 &1 &1 &1 &0 &1 &1 &0 &1 &1\\ \hline A3 &0 &0 &0 &0 &1 &1 &0 &0 &1 &0 &1 &1 &0 &0 &1\\ \hline A4 &0 &0 &0 &0 &1 &1 &0 &0 &1 &0 &1 &1 &0 &1 &1\\ \hline B1 &0 &0 &0 &0 &0 &1 &0 &0 &1 &0 &1 &1 &0 &1 &1\\ \hline B2 &0 &0 &0 &0 &1 &0 &0 &0 &1 &0 &1 &1 &0 &1 &1\\ \hline B3 &0 &0 &0 &0 &1 &0 &0 &0 &1 &0 &1 &1 &0 &0 &1\\ \hline C1 &0 &0 &0 &1 &1 &1 &0 &0 &1 &0 &1 &1 &0 &1 &1\\ \hline C2 &0 &1 &0 &0 &1 &1 &0 &1 &1 &0 &1 &1 &0 &1 &1\\ \hline C3 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &1 &1 &0 &0 &1\\ \hline D1 &0 &1 &0 &0 &1 &1 &0 &1 &1 &0 &1 &1 &0 &1 &1\\ \hline D2 &0 &0 &0 &0 &0 &0 &0 &0 &1 &0 &0 &0 &0 &0 &0\\ \hline D3 &0 &0 &0 &0 &0 &1 &0 &0 &1 &0 &1 &1 &0 &1 &1\\ \hline E1 &1 &1 &0 &1 &1 &1 &1 &1 &1 &0 &1 &1 &0 &1 &1\\ \hline E2 &1 &1 &0 &1 &1 &1 &1 &1 &1 &0 &1 &1 &0 &1 &1\\ \hline \end{array} $$