原始矩阵(直接影响矩阵)为


$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{10 \times10}} &F1 &F2 &F3 &F4 &F5 &F6 &F7 &F8 &F9 &F10\\ \hline F1 &0 &3 &3 &1 &3 &2 &2 &3 &2 &0\\ \hline F2 &1 &0 &5 &1 &0 &2 &5 &2 &1 &5\\ \hline F3 &0 &0 &0 &0 &2 &0 &3 &0 &4 &1\\ \hline F4 &3 &0 &5 &0 &0 &0 &3 &0 &0 &0\\ \hline F5 &3 &0 &0 &0 &0 &0 &0 &0 &5 &3\\ \hline F6 &0 &5 &3 &1 &2 &0 &3 &0 &1 &1\\ \hline F7 &2 &1 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline F8 &0 &3 &3 &1 &0 &0 &1 &0 &0 &2\\ \hline F9 &0 &1 &1 &0 &0 &0 &2 &0 &0 &3\\ \hline F10 &0 &0 &4 &0 &1 &1 &2 &0 &0 &0\\ \hline \end{array} $$

规范直接关系矩阵求解过程 $$ \require{cancel} \require{AMScd} \begin{CD} O @>>>N \\ \end{CD} $$


  • $$\mathcal{N}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{10 \times10}} &F1 &F2 &F3 &F4 &F5 &F6 &F7 &F8 &F9 &F10\\ \hline F1 &0 &0.115 &0.115 &0.038 &0.115 &0.077 &0.077 &0.115 &0.077 &0\\ \hline F2 &0.038 &0 &0.192 &0.038 &0 &0.077 &0.192 &0.077 &0.038 &0.192\\ \hline F3 &0 &0 &0 &0 &0.077 &0 &0.115 &0 &0.154 &0.038\\ \hline F4 &0.115 &0 &0.192 &0 &0 &0 &0.115 &0 &0 &0\\ \hline F5 &0.115 &0 &0 &0 &0 &0 &0 &0 &0.192 &0.115\\ \hline F6 &0 &0.192 &0.115 &0.038 &0.077 &0 &0.115 &0 &0.038 &0.038\\ \hline F7 &0.077 &0.038 &0 &0 &0 &0 &0 &0 &0 &0.038\\ \hline F8 &0 &0.115 &0.115 &0.038 &0 &0 &0.038 &0 &0 &0.077\\ \hline F9 &0 &0.038 &0.038 &0 &0 &0 &0.077 &0 &0 &0.115\\ \hline F10 &0 &0 &0.154 &0 &0.038 &0.038 &0.077 &0 &0 &0\\ \hline \end{array} $$

综合影响矩阵求解过程 $$\begin{CD} N @>>>T \\ \end{CD} $$


  综合影响矩阵如下

$T=\mathcal{N}(I-\mathcal{N})^{-1}$

$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{10 \times10}} &F1 &F2 &F3 &F4 &F5 &F6 &F7 &F8 &F9 &F10\\ \hline F1 &0.044 &0.167 &0.21 &0.055 &0.148 &0.097 &0.178 &0.133 &0.151 &0.096\\ \hline F2 &0.074 &0.052 &0.285 &0.05 &0.048 &0.096 &0.289 &0.089 &0.103 &0.252\\ \hline F3 &0.022 &0.016 &0.026 &0.002 &0.085 &0.006 &0.144 &0.004 &0.177 &0.079\\ \hline F4 &0.134 &0.029 &0.225 &0.007 &0.035 &0.014 &0.167 &0.018 &0.053 &0.033\\ \hline F5 &0.125 &0.03 &0.058 &0.007 &0.026 &0.018 &0.054 &0.017 &0.218 &0.156\\ \hline F6 &0.042 &0.216 &0.2 &0.05 &0.104 &0.025 &0.21 &0.022 &0.102 &0.122\\ \hline F7 &0.084 &0.054 &0.034 &0.006 &0.015 &0.013 &0.029 &0.014 &0.017 &0.057\\ \hline F8 &0.021 &0.128 &0.174 &0.045 &0.022 &0.016 &0.104 &0.012 &0.038 &0.121\\ \hline F9 &0.012 &0.047 &0.073 &0.003 &0.013 &0.01 &0.109 &0.005 &0.017 &0.136\\ \hline F10 &0.016 &0.016 &0.17 &0.003 &0.058 &0.042 &0.111 &0.003 &0.041 &0.027\\ \hline \end{array} $$

区段截取的处理


$T$的 平均数$\bar{x} $ 与 总体标准差$ \sigma $的求解

均值$\bar{x} $

$\bar{x}= 0.076094740077933 $

总体标准差$\sigma=\sqrt { \frac {\sum \limits_{i=1}^{n^2} ({x_i-\bar{x}})^2 }{n^2} } $

$\sigma = 0.07061984136603 $

区段截取最小边界$ \lambda_{min}= \bar{x} $

$\lambda_{min} = 0.076094740077933 $

区段截取最大边界$\lambda_{max}= \bar{x} +\sigma $

$\lambda_{max} = 0.14671458144396 $

\begin{CD} T@>区段截取>> \tilde A \\ \end{CD}

$$ \tilde a_{ij}= \begin{cases} 1 , \text{ $e_i$}\rightarrow \text{$e_j$ 当: $ t_{ij} > \lambda_{max} $} \\ t_{ij} , \text{ $e_i$}\rightarrow \text{$e_j $ 当:$\lambda_{min} ≤ t_{ij} ≤ \lambda_{max}$ } \\ 0, \text{ $e_i$}\rightarrow \text{$e_j$ 当: $ t_{ij} < \lambda_{min} $} \end{cases} $$

$[\lambda_{min}- \lambda_{max} ] $ 截取后的模糊矩阵$ \tilde A$

   $ \lambda_{min} =0.076094740077933$

   $ \lambda_{max} =0.14671458144396$

$$ \tilde A=\begin{array}{c|c|c|c|c|c|c}{M_{10 \times10}} &F1 &F2 &F3 &F4 &F5 &F6 &F7 &F8 &F9 &F10\\ \hline F1 &0 &1 &1 &0 &1 &0.0968 &1 &0.13327 &1 &0.09554\\ \hline F2 &0 &0 &1 &0 &0 &0.09636 &1 &0.0895 &0.10285 &1\\ \hline F3 &0 &0 &0 &0 &0.08493 &0 &0.14393 &0 &1 &0.07887\\ \hline F4 &0.13425 &0 &1 &0 &0 &0 &1 &0 &0 &0\\ \hline F5 &0.12459 &0 &0 &0 &0 &0 &0 &0 &1 &1\\ \hline F6 &0 &1 &1 &0 &0.10373 &0 &1 &0 &0.10162 &0.12212\\ \hline F7 &0.08374 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline F8 &0 &0.12775 &1 &0 &0 &0 &0.10449 &0 &0 &0.12067\\ \hline F9 &0 &0 &0 &0 &0 &0 &0.10866 &0 &0 &0.13561\\ \hline F10 &0 &0 &1 &0 &0 &0 &0.11147 &0 &0 &0\\ \hline \end{array} $$