原始矩阵(直接影响矩阵)为


$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &H1 &H2 &H3 &K1 &K2 &K3 &X1 &X2 &X3 &S1 &S2 &S3\\ \hline H1 &0 &2 &1 &0 &9 &0 &2 &9 &1 &0 &2 &1\\ \hline H2 &3 &0 &0 &0 &9 &8 &0 &7 &0 &3 &2 &1\\ \hline H3 &3 &9 &0 &3 &0 &0 &3 &0 &0 &0 &2 &6\\ \hline K1 &3 &9 &4 &0 &0 &0 &1 &5 &0 &0 &2 &5\\ \hline K2 &6 &9 &0 &0 &0 &0 &0 &0 &5 &0 &2 &1\\ \hline K3 &8 &5 &2 &0 &1 &0 &2 &0 &9 &0 &2 &1\\ \hline X1 &3 &0 &0 &0 &0 &0 &0 &0 &9 &0 &2 &1\\ \hline X2 &0 &6 &2 &5 &0 &4 &1 &0 &0 &2 &2 &1\\ \hline X3 &9 &0 &0 &0 &0 &8 &7 &8 &8 &0 &2 &1\\ \hline S1 &0 &0 &3 &3 &3 &5 &8 &8 &8 &0 &0 &1\\ \hline S2 &0 &3 &0 &0 &0 &8 &4 &8 &8 &0 &0 &1\\ \hline S3 &5 &0 &0 &4 &5 &8 &8 &8 &8 &0 &2 &0\\ \hline \end{array} $$

规范直接关系矩阵求解过程 $$ \require{cancel} \require{AMScd} \begin{CD} O @>>>N \\ \end{CD} $$


  • $$\mathcal{N}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &H1 &H2 &H3 &K1 &K2 &K3 &X1 &X2 &X3 &S1 &S2 &S3\\ \hline H1 &0 &0.028 &0.014 &0 &0.126 &0 &0.028 &0.126 &0.014 &0 &0.028 &0.014\\ \hline H2 &0.042 &0 &0 &0 &0.126 &0.112 &0 &0.098 &0 &0.042 &0.028 &0.014\\ \hline H3 &0.042 &0.126 &0 &0.042 &0 &0 &0.042 &0 &0 &0 &0.028 &0.084\\ \hline K1 &0.042 &0.126 &0.056 &0 &0 &0 &0.014 &0.07 &0 &0 &0.028 &0.07\\ \hline K2 &0.084 &0.126 &0 &0 &0 &0 &0 &0 &0.07 &0 &0.028 &0.014\\ \hline K3 &0.112 &0.07 &0.028 &0 &0.014 &0 &0.028 &0 &0.126 &0 &0.028 &0.014\\ \hline X1 &0.042 &0 &0 &0 &0 &0 &0 &0 &0.126 &0 &0.028 &0.014\\ \hline X2 &0 &0.084 &0.028 &0.07 &0 &0.056 &0.014 &0 &0 &0.028 &0.028 &0.014\\ \hline X3 &0.126 &0 &0 &0 &0 &0.112 &0.098 &0.112 &0 &0 &0.028 &0.014\\ \hline S1 &0 &0 &0.042 &0.042 &0.042 &0.07 &0.112 &0.112 &0.112 &0 &0 &0.014\\ \hline S2 &0 &0.042 &0 &0 &0 &0.112 &0.056 &0.112 &0.112 &0 &0 &0.014\\ \hline S3 &0.07 &0 &0 &0.056 &0.07 &0.112 &0.112 &0.112 &0.112 &0 &0.028 &0\\ \hline \end{array} $$

综合影响矩阵求解过程 $$\begin{CD} N @>>>T \\ \end{CD} $$



  综合影响矩阵如下

$T=\mathcal{N}(I-\mathcal{N})^{-1}$

$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &H1 &H2 &H3 &K1 &K2 &K3 &X1 &X2 &X3 &S1 &S2 &S3\\ \hline H1 &0.028 &0.067 &0.02 &0.013 &0.14 &0.029 &0.043 &0.15 &0.042 &0.007 &0.044 &0.024\\ \hline H2 &0.082 &0.047 &0.012 &0.013 &0.148 &0.141 &0.024 &0.132 &0.046 &0.048 &0.047 &0.026\\ \hline H3 &0.071 &0.148 &0.007 &0.051 &0.035 &0.039 &0.064 &0.047 &0.033 &0.008 &0.044 &0.095\\ \hline K1 &0.071 &0.157 &0.063 &0.016 &0.035 &0.042 &0.037 &0.114 &0.029 &0.01 &0.046 &0.084\\ \hline K2 &0.111 &0.143 &0.004 &0.005 &0.034 &0.036 &0.019 &0.046 &0.089 &0.007 &0.042 &0.022\\ \hline K3 &0.149 &0.094 &0.033 &0.007 &0.047 &0.039 &0.057 &0.054 &0.152 &0.005 &0.046 &0.026\\ \hline X1 &0.066 &0.01 &0.003 &0.003 &0.011 &0.025 &0.021 &0.032 &0.14 &0.001 &0.037 &0.019\\ \hline X2 &0.028 &0.112 &0.037 &0.077 &0.022 &0.084 &0.032 &0.035 &0.028 &0.034 &0.041 &0.028\\ \hline X3 &0.159 &0.035 &0.011 &0.013 &0.028 &0.138 &0.12 &0.15 &0.046 &0.006 &0.048 &0.026\\ \hline S1 &0.051 &0.044 &0.053 &0.057 &0.058 &0.107 &0.142 &0.151 &0.155 &0.006 &0.024 &0.033\\ \hline S2 &0.046 &0.072 &0.01 &0.013 &0.019 &0.151 &0.084 &0.148 &0.149 &0.007 &0.02 &0.025\\ \hline S3 &0.13 &0.054 &0.015 &0.07 &0.097 &0.155 &0.146 &0.166 &0.168 &0.007 &0.057 &0.02\\ \hline \end{array} $$