原始矩阵(直接影响矩阵)为
$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &H1 &H2 &H3 &K1 &K2 &K3 &X1 &X2 &X3 &S1 &S2 &S3\\ \hline H1 &0 &2 &1 &0 &9 &0 &2 &9 &1 &0 &2 &1\\ \hline H2 &3 &0 &0 &0 &9 &8 &0 &7 &0 &3 &2 &1\\ \hline H3 &3 &9 &0 &3 &0 &0 &3 &0 &0 &0 &2 &6\\ \hline K1 &3 &9 &4 &0 &0 &0 &1 &5 &0 &0 &2 &5\\ \hline K2 &6 &9 &0 &0 &0 &0 &0 &0 &5 &0 &2 &1\\ \hline K3 &8 &5 &2 &0 &1 &0 &2 &0 &9 &0 &2 &1\\ \hline X1 &3 &0 &0 &0 &0 &0 &0 &0 &9 &0 &2 &1\\ \hline X2 &0 &6 &2 &5 &0 &4 &1 &0 &0 &2 &2 &1\\ \hline X3 &9 &0 &0 &0 &0 &8 &7 &8 &8 &0 &2 &1\\ \hline S1 &0 &0 &3 &3 &3 &5 &8 &8 &8 &0 &0 &1\\ \hline S2 &0 &3 &0 &0 &0 &8 &4 &8 &8 &0 &0 &1\\ \hline S3 &5 &0 &0 &4 &5 &8 &8 &8 &8 &0 &2 &0\\ \hline \end{array} $$
规范直接关系矩阵求解过程 $$ \require{cancel} \require{AMScd} \begin{CD} O @>>>N \\ \end{CD} $$
- $$\mathcal{N}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &H1 &H2 &H3 &K1 &K2 &K3 &X1 &X2 &X3 &S1 &S2 &S3\\ \hline H1 &0 &0.042 &0.021 &0 &0.188 &0 &0.042 &0.188 &0.021 &0 &0.042 &0.021\\ \hline H2 &0.063 &0 &0 &0 &0.188 &0.167 &0 &0.146 &0 &0.063 &0.042 &0.021\\ \hline H3 &0.063 &0.188 &0 &0.063 &0 &0 &0.063 &0 &0 &0 &0.042 &0.125\\ \hline K1 &0.063 &0.188 &0.083 &0 &0 &0 &0.021 &0.104 &0 &0 &0.042 &0.104\\ \hline K2 &0.125 &0.188 &0 &0 &0 &0 &0 &0 &0.104 &0 &0.042 &0.021\\ \hline K3 &0.167 &0.104 &0.042 &0 &0.021 &0 &0.042 &0 &0.188 &0 &0.042 &0.021\\ \hline X1 &0.063 &0 &0 &0 &0 &0 &0 &0 &0.188 &0 &0.042 &0.021\\ \hline X2 &0 &0.125 &0.042 &0.104 &0 &0.083 &0.021 &0 &0 &0.042 &0.042 &0.021\\ \hline X3 &0.188 &0 &0 &0 &0 &0.167 &0.146 &0.167 &0 &0 &0.042 &0.021\\ \hline S1 &0 &0 &0.063 &0.063 &0.063 &0.104 &0.167 &0.167 &0.167 &0 &0 &0.021\\ \hline S2 &0 &0.063 &0 &0 &0 &0.167 &0.083 &0.167 &0.167 &0 &0 &0.021\\ \hline S3 &0.104 &0 &0 &0.083 &0.104 &0.167 &0.167 &0.167 &0.167 &0 &0.042 &0\\ \hline \end{array} $$
综合影响矩阵求解过程 $$\begin{CD} N @>>>T \\ \end{CD} $$
综合影响矩阵如下
$T=\mathcal{N}(I-\mathcal{N})^{-1}$
$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &H1 &H2 &H3 &K1 &K2 &K3 &X1 &X2 &X3 &S1 &S2 &S3\\ \hline H1 &0.094 &0.157 &0.043 &0.038 &0.243 &0.095 &0.095 &0.279 &0.112 &0.021 &0.092 &0.055\\ \hline H2 &0.193 &0.141 &0.035 &0.041 &0.267 &0.272 &0.081 &0.272 &0.14 &0.083 &0.104 &0.062\\ \hline H3 &0.166 &0.273 &0.024 &0.094 &0.103 &0.122 &0.136 &0.146 &0.11 &0.023 &0.097 &0.162\\ \hline K1 &0.167 &0.295 &0.108 &0.047 &0.107 &0.132 &0.1 &0.248 &0.105 &0.029 &0.102 &0.149\\ \hline K2 &0.216 &0.256 &0.018 &0.021 &0.097 &0.109 &0.063 &0.136 &0.178 &0.022 &0.089 &0.05\\ \hline K3 &0.288 &0.195 &0.063 &0.027 &0.122 &0.123 &0.13 &0.163 &0.284 &0.019 &0.102 &0.061\\ \hline X1 &0.137 &0.042 &0.011 &0.014 &0.04 &0.074 &0.06 &0.093 &0.24 &0.006 &0.073 &0.04\\ \hline X2 &0.094 &0.218 &0.07 &0.129 &0.073 &0.176 &0.083 &0.114 &0.094 &0.06 &0.088 &0.064\\ \hline X3 &0.301 &0.115 &0.034 &0.04 &0.091 &0.264 &0.221 &0.298 &0.138 &0.02 &0.107 &0.062\\ \hline S1 &0.159 &0.138 &0.099 &0.109 &0.133 &0.232 &0.266 &0.308 &0.306 &0.021 &0.076 &0.079\\ \hline S2 &0.143 &0.166 &0.032 &0.039 &0.072 &0.29 &0.172 &0.295 &0.288 &0.023 &0.065 &0.06\\ \hline S3 &0.293 &0.17 &0.046 &0.13 &0.206 &0.317 &0.281 &0.354 &0.343 &0.025 &0.134 &0.064\\ \hline \end{array} $$