原始矩阵(直接影响矩阵)为


$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &H1 &H2 &H3 &K1 &K2 &K3 &X1 &X2 &X3 &S1 &S2 &S3\\ \hline H1 &0 &2 &1 &0 &9 &0 &2 &9 &1 &0 &2 &1\\ \hline H2 &3 &0 &0 &0 &9 &8 &0 &7 &0 &3 &2 &1\\ \hline H3 &3 &9 &0 &3 &0 &0 &3 &0 &0 &0 &2 &6\\ \hline K1 &3 &9 &4 &0 &0 &0 &1 &5 &0 &0 &2 &5\\ \hline K2 &6 &9 &0 &0 &0 &0 &0 &0 &5 &0 &2 &1\\ \hline K3 &8 &5 &2 &0 &1 &0 &2 &0 &9 &0 &2 &1\\ \hline X1 &3 &0 &0 &0 &0 &0 &0 &0 &0 &0 &2 &1\\ \hline X2 &0 &6 &2 &0 &0 &0 &1 &0 &0 &2 &2 &1\\ \hline X3 &9 &0 &0 &0 &0 &0 &1 &0 &0 &0 &2 &1\\ \hline S1 &0 &0 &3 &3 &3 &3 &0 &0 &0 &0 &0 &1\\ \hline S2 &0 &3 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline S3 &5 &0 &0 &4 &5 &8 &0 &0 &0 &0 &2 &0\\ \hline \end{array} $$

规范直接关系矩阵求解过程 $$ \require{cancel} \require{AMScd} \begin{CD} O @>>>N \\ \end{CD} $$


  • $$\mathcal{N}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &H1 &H2 &H3 &K1 &K2 &K3 &X1 &X2 &X3 &S1 &S2 &S3\\ \hline H1 &0 &0.047 &0.023 &0 &0.209 &0 &0.047 &0.209 &0.023 &0 &0.047 &0.023\\ \hline H2 &0.07 &0 &0 &0 &0.209 &0.186 &0 &0.163 &0 &0.07 &0.047 &0.023\\ \hline H3 &0.07 &0.209 &0 &0.07 &0 &0 &0.07 &0 &0 &0 &0.047 &0.14\\ \hline K1 &0.07 &0.209 &0.093 &0 &0 &0 &0.023 &0.116 &0 &0 &0.047 &0.116\\ \hline K2 &0.14 &0.209 &0 &0 &0 &0 &0 &0 &0.116 &0 &0.047 &0.023\\ \hline K3 &0.186 &0.116 &0.047 &0 &0.023 &0 &0.047 &0 &0.209 &0 &0.047 &0.023\\ \hline X1 &0.07 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.047 &0.023\\ \hline X2 &0 &0.14 &0.047 &0 &0 &0 &0.023 &0 &0 &0.047 &0.047 &0.023\\ \hline X3 &0.209 &0 &0 &0 &0 &0 &0.023 &0 &0 &0 &0.047 &0.023\\ \hline S1 &0 &0 &0.07 &0.07 &0.07 &0.07 &0 &0 &0 &0 &0 &0.023\\ \hline S2 &0 &0.07 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.023\\ \hline S3 &0.116 &0 &0 &0.093 &0.116 &0.186 &0 &0 &0 &0 &0.047 &0\\ \hline \end{array} $$

综合影响矩阵求解过程 $$\begin{CD} N @>>>T \\ \end{CD} $$



  综合影响矩阵如下

$T=\mathcal{N}(I-\mathcal{N})^{-1}$

$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &H1 &H2 &H3 &K1 &K2 &K3 &X1 &X2 &X3 &S1 &S2 &S3\\ \hline H1 &0.085 &0.165 &0.042 &0.01 &0.271 &0.043 &0.063 &0.255 &0.066 &0.023 &0.096 &0.055\\ \hline H2 &0.196 &0.149 &0.034 &0.015 &0.301 &0.232 &0.03 &0.23 &0.088 &0.091 &0.109 &0.063\\ \hline H3 &0.166 &0.296 &0.022 &0.09 &0.121 &0.09 &0.088 &0.093 &0.037 &0.025 &0.101 &0.177\\ \hline K1 &0.166 &0.32 &0.115 &0.025 &0.125 &0.092 &0.05 &0.206 &0.038 &0.032 &0.107 &0.162\\ \hline K2 &0.226 &0.275 &0.015 &0.007 &0.114 &0.062 &0.02 &0.093 &0.148 &0.024 &0.094 &0.051\\ \hline K3 &0.297 &0.201 &0.063 &0.011 &0.137 &0.05 &0.075 &0.096 &0.243 &0.018 &0.104 &0.062\\ \hline X1 &0.082 &0.018 &0.004 &0.003 &0.025 &0.009 &0.005 &0.02 &0.007 &0.002 &0.056 &0.029\\ \hline X2 &0.046 &0.185 &0.057 &0.013 &0.059 &0.047 &0.033 &0.041 &0.018 &0.061 &0.072 &0.046\\ \hline X3 &0.235 &0.042 &0.01 &0.005 &0.063 &0.015 &0.037 &0.057 &0.016 &0.006 &0.071 &0.038\\ \hline S1 &0.065 &0.079 &0.085 &0.081 &0.109 &0.095 &0.017 &0.036 &0.034 &0.007 &0.031 &0.056\\ \hline S2 &0.019 &0.083 &0.003 &0.003 &0.026 &0.021 &0.003 &0.018 &0.008 &0.007 &0.01 &0.029\\ \hline S3 &0.224 &0.122 &0.029 &0.1 &0.199 &0.217 &0.028 &0.078 &0.074 &0.012 &0.098 &0.04\\ \hline \end{array} $$