原始矩阵(直接影响矩阵)为


$$Ori=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &R1 &R2 &R3 &K1 &K2 &K3 &X1 &X2 &X3 &T1 &T2 &T3\\ \hline R1 &0 &2 &1 &0 &0 &5 &2 &9 &1 &0 &2 &1\\ \hline R2 &3 &0 &0 &0 &0 &5 &0 &7 &7 &7 &7 &7\\ \hline R3 &3 &9 &0 &6 &6 &5 &6 &6 &6 &6 &6 &6\\ \hline K1 &3 &9 &4 &0 &0 &5 &1 &0 &8 &4 &8 &5\\ \hline K2 &6 &9 &0 &0 &0 &5 &0 &0 &5 &0 &2 &1\\ \hline K3 &8 &5 &2 &0 &1 &0 &2 &0 &9 &0 &2 &1\\ \hline X1 &3 &0 &0 &0 &0 &5 &0 &0 &0 &0 &2 &1\\ \hline X2 &0 &6 &2 &0 &0 &5 &1 &0 &0 &2 &2 &1\\ \hline X3 &9 &0 &0 &0 &0 &5 &1 &0 &0 &0 &2 &1\\ \hline T1 &0 &0 &3 &3 &3 &5 &0 &0 &0 &0 &0 &1\\ \hline T2 &0 &3 &0 &0 &0 &5 &0 &0 &0 &0 &0 &1\\ \hline T3 &5 &0 &0 &0 &0 &5 &0 &0 &0 &0 &2 &0\\ \hline \end{array} $$

规范直接关系矩阵求解过程 $$ \require{cancel} \require{AMScd} \begin{CD} O @>>>N \\ \end{CD} $$


  • $$\mathcal{N}=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &R1 &R2 &R3 &K1 &K2 &K3 &X1 &X2 &X3 &T1 &T2 &T3\\ \hline R1 &0 &0.03 &0.015 &0 &0 &0.076 &0.03 &0.136 &0.015 &0 &0.03 &0.015\\ \hline R2 &0.045 &0 &0 &0 &0 &0.076 &0 &0.106 &0.106 &0.106 &0.106 &0.106\\ \hline R3 &0.045 &0.136 &0 &0.091 &0.091 &0.076 &0.091 &0.091 &0.091 &0.091 &0.091 &0.091\\ \hline K1 &0.045 &0.136 &0.061 &0 &0 &0.076 &0.015 &0 &0.121 &0.061 &0.121 &0.076\\ \hline K2 &0.091 &0.136 &0 &0 &0 &0.076 &0 &0 &0.076 &0 &0.03 &0.015\\ \hline K3 &0.121 &0.076 &0.03 &0 &0.015 &0 &0.03 &0 &0.136 &0 &0.03 &0.015\\ \hline X1 &0.045 &0 &0 &0 &0 &0.076 &0 &0 &0 &0 &0.03 &0.015\\ \hline X2 &0 &0.091 &0.03 &0 &0 &0.076 &0.015 &0 &0 &0.03 &0.03 &0.015\\ \hline X3 &0.136 &0 &0 &0 &0 &0.076 &0.015 &0 &0 &0 &0.03 &0.015\\ \hline T1 &0 &0 &0.045 &0.045 &0.045 &0.076 &0 &0 &0 &0 &0 &0.015\\ \hline T2 &0 &0.045 &0 &0 &0 &0.076 &0 &0 &0 &0 &0 &0.015\\ \hline T3 &0.076 &0 &0 &0 &0 &0.076 &0 &0 &0 &0 &0.03 &0\\ \hline \end{array} $$

综合影响矩阵求解过程 $$\begin{CD} N @>>>T \\ \end{CD} $$



  综合影响矩阵如下

$T=\mathcal{N}(I-\mathcal{N})^{-1}$

$$T=\begin{array}{|c|c|c|c|c|c|c|}\hline {M_{12 \times12}} &R1 &R2 &R3 &K1 &K2 &K3 &X1 &X2 &X3 &T1 &T2 &T3\\ \hline R1 &0.027 &0.059 &0.024 &0.003 &0.004 &0.109 &0.039 &0.148 &0.04 &0.013 &0.051 &0.03\\ \hline R2 &0.093 &0.034 &0.015 &0.007 &0.009 &0.136 &0.012 &0.124 &0.132 &0.115 &0.131 &0.123\\ \hline R3 &0.128 &0.203 &0.023 &0.098 &0.101 &0.179 &0.108 &0.132 &0.16 &0.124 &0.155 &0.138\\ \hline K1 &0.11 &0.175 &0.073 &0.011 &0.013 &0.151 &0.033 &0.04 &0.171 &0.088 &0.167 &0.113\\ \hline K2 &0.132 &0.157 &0.008 &0.002 &0.003 &0.119 &0.011 &0.035 &0.112 &0.018 &0.061 &0.04\\ \hline K3 &0.162 &0.099 &0.036 &0.004 &0.02 &0.051 &0.043 &0.036 &0.161 &0.015 &0.06 &0.037\\ \hline X1 &0.061 &0.012 &0.004 &0 &0.002 &0.088 &0.005 &0.01 &0.015 &0.002 &0.038 &0.02\\ \hline X2 &0.028 &0.11 &0.037 &0.005 &0.007 &0.106 &0.023 &0.019 &0.031 &0.046 &0.054 &0.035\\ \hline X3 &0.155 &0.018 &0.006 &0.001 &0.002 &0.1 &0.024 &0.024 &0.019 &0.003 &0.043 &0.023\\ \hline T1 &0.03 &0.032 &0.053 &0.051 &0.052 &0.101 &0.01 &0.012 &0.033 &0.012 &0.022 &0.031\\ \hline T2 &0.018 &0.055 &0.003 &0.001 &0.002 &0.087 &0.004 &0.009 &0.018 &0.006 &0.011 &0.024\\ \hline T3 &0.09 &0.014 &0.005 &0.001 &0.002 &0.09 &0.006 &0.014 &0.016 &0.002 &0.039 &0.006\\ \hline \end{array} $$