| 结果优先——UP型抽取过程 |
| $$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline t1&t1,t2,t3,t4,t5,t9&t1,t9 \\\hline t2&\color{red}{\fbox{t2,t3,t4,t5}}&\color{red}{\fbox{t2,t3,t4,t5}} \\\hline t3&\color{red}{\fbox{t2,t3,t4,t5}}&\color{red}{\fbox{t2,t3,t4,t5}} \\\hline t4&\color{red}{\fbox{t2,t3,t4,t5}}&\color{red}{\fbox{t2,t3,t4,t5}} \\\hline t5&\color{red}{\fbox{t2,t3,t4,t5}}&\color{red}{\fbox{t2,t3,t4,t5}} \\\hline t6&t2,t3,t4,t5,t6&t6 \\\hline t7&t7,t13&t7 \\\hline t8&t2,t3,t4,t5,t8&t8 \\\hline t9&t1,t2,t3,t4,t5,t9&t1,t9 \\\hline t10&t2,t3,t4,t5,t6,t10,t11&t10 \\\hline t11&t2,t3,t4,t5,t6,t11&t11 \\\hline t12&t12,t13&t12 \\\hline t13&\color{red}{\fbox{t13}}&\color{red}{\fbox{t13}} \\\hline \end{array} $$ |
| 抽取出t2、t3、t4、t5、t13 剩余的情况如下 |
| $$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline t1&\color{red}{\fbox{t1,t9}}&\color{red}{\fbox{t1,t9}} \\\hline t6&\color{red}{\fbox{t6}}&\color{red}{\fbox{t6}} \\\hline t7&\color{red}{\fbox{t7}}&\color{red}{\fbox{t7}} \\\hline t8&\color{red}{\fbox{t8}}&\color{red}{\fbox{t8}} \\\hline t9&\color{red}{\fbox{t1,t9}}&\color{red}{\fbox{t1,t9}} \\\hline t10&t6,t10,t11&t10 \\\hline t11&t6,t11&t11 \\\hline t12&\color{red}{\fbox{t12}}&\color{red}{\fbox{t12}} \\\hline \end{array} $$ |
| 抽取出t1、t6、t7、t8、t9、t12 剩余的情况如下 |
| $$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline t10&t10,t11&t10 \\\hline t11&\color{red}{\fbox{t11}}&\color{red}{\fbox{t11}} \\\hline \end{array} $$ |
| 抽取出t11 剩余的情况如下 |
| $$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline t10&\color{red}{\fbox{t10}}&\color{red}{\fbox{t10}} \\\hline \end{array} $$ |
| 抽取出t10 剩余的情况如下 |
| 层级 | 结果优先——UP型 |
| 第0层 | t2,t3,t4,t5,t13 |
| 第1层 | t1,t6,t7,t8,t9,t12 |
| 第2层 | t11 |
| 第3层 | t10 |
求解过程如链接所示:缩点、缩边,再把回路要素替代回去。这步是最难的,本处用的算法那人得了计算机界的诺奖-图领奖,算法为trajan算法的组合。现在的论文都忽略了这步。
可达矩阵 R的缩点矩阵 R'
$$R'=\begin{array} {c|c|c|c|c|c|c|c}{M_{9 \times9}} &t1+t9 &t2+t3+t4+t5 &t6 &t7 &t8 &t10 &t11 &t12 &t13\\ \hline t1+t9 &1 &1 & & & & & & & \\ \hline t2+t3+t4+t5 & &1 & & & & & & & \\ \hline t6 & &1 &1 & & & & & & \\ \hline t7 & & & &1 & & & & &1\\ \hline t8 & &1 & & &1 & & & & \\ \hline t10 & &1 &1 & & &1 &1 & & \\ \hline t11 & &1 &1 & & & &1 & & \\ \hline t12 & & & & & & & &1 &1\\ \hline t13 & & & & & & & & &1\\ \hline \end{array} $$缩点矩阵 R'的缩边矩阵 S' 公式:$ S'=R'-(R'-I)^2-I$
$$S'=\begin{array} {c|c|c|c|c|c|c|c}{M_{9 \times9}} &t1+t9 &t2+t3+t4+t5 &t6 &t7 &t8 &t10 &t11 &t12 &t13\\ \hline t1+t9 & &1 & & & & & & & \\ \hline t2+t3+t4+t5 & & & & & & & & & \\ \hline t6 & &1 & & & & & & & \\ \hline t7 & & & & & & & & &1\\ \hline t8 & &1 & & & & & & & \\ \hline t10 & & & & & & &1 & & \\ \hline t11 & & &1 & & & & & & \\ \hline t12 & & & & & & & & &1\\ \hline t13 & & & & & & & & & \\ \hline \end{array} $$以最简菊花链表示回路代入回去,即为一般性骨架矩阵 $S$
$$S=\begin{array} {c|c|c|c|c|c|c|c}{M_{13 \times13}} &t1 &t2 &t3 &t4 &t5 &t6 &t7 &t8 &t9 &t10 &t11 &t12 &t13\\ \hline t1 & & &1 & & & & & &1 & & & & \\ \hline t2 & & &1 & & & & & & & & & & \\ \hline t3 & & & &1 & & & & & & & & & \\ \hline t4 & & & & &1 & & & & & & & & \\ \hline t5 & &1 & & & & & & & & & & & \\ \hline t6 & & & &1 & & & & & & & & & \\ \hline t7 & & & & & & & & & & & & &1\\ \hline t8 & & &1 & & & & & & & & & & \\ \hline t9 &1 & & & & & & & & & & & & \\ \hline t10 & & & & & & & & & & &1 & & \\ \hline t11 & & & & & &1 & & & & & & & \\ \hline t12 & & & & & & & & & & & & &1\\ \hline t13 & & & & & & & & & & & & & \\ \hline \end{array} $$