结果优先——UP型抽取过程 |
$$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline A1&A1,A4,A8&A1 \\\hline A2&A2,A4,A5,A6,A7,A8&A2 \\\hline A3&A3,A4,A5,A6,A7,A8&A3 \\\hline A4&\color{red}{\fbox{A4,A8}}&\color{red}{\fbox{A4,A8}} \\\hline A5&A4,A5,A6,A7,A8&A5,A6,A7 \\\hline A6&A4,A5,A6,A7,A8&A5,A6,A7 \\\hline A7&A4,A5,A6,A7,A8&A5,A6,A7 \\\hline A8&\color{red}{\fbox{A4,A8}}&\color{red}{\fbox{A4,A8}} \\\hline \end{array} $$ |
抽取出A4、A8 剩余的情况如下 |
$$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline A1&\color{red}{\fbox{A1}}&\color{red}{\fbox{A1}} \\\hline A2&A2,A5,A6,A7&A2 \\\hline A3&A3,A5,A6,A7&A3 \\\hline A5&\color{red}{\fbox{A5,A6,A7}}&\color{red}{\fbox{A5,A6,A7}} \\\hline A6&\color{red}{\fbox{A5,A6,A7}}&\color{red}{\fbox{A5,A6,A7}} \\\hline A7&\color{red}{\fbox{A5,A6,A7}}&\color{red}{\fbox{A5,A6,A7}} \\\hline \end{array} $$ |
抽取出A1、A5、A6、A7 剩余的情况如下 |
$$\begin{array} {c|c|c|c|c|c|c|c}{} & R_{e} & T_{e} \\\hline A2&\color{red}{\fbox{A2}}&\color{red}{\fbox{A2}} \\\hline A3&\color{red}{\fbox{A3}}&\color{red}{\fbox{A3}} \\\hline \end{array} $$ |
抽取出A2、A3 剩余的情况如下 |
层级 | 结果优先——UP型 |
第0层 | A4,A8 |
第1层 | A1,A5,A6,A7 |
第2层 | A2,A3 |
求解过程如链接所示:缩点、缩边,再把回路要素替代回去。这步是最难的,本处用的算法那人得了计算机界的诺奖-图领奖,算法为trajan算法的组合。现在的论文都忽略了这步。
可达矩阵 R的缩点矩阵 R'
$$R'=\begin{array} {c|c|c|c|c|c|c|c}{M_{5 \times5}} &A1 &A2 &A3 &A4+A8 &A5+A6+A7\\ \hline A1 &1 & & &1 & \\ \hline A2 & &1 & &1 &1\\ \hline A3 & & &1 &1 &1\\ \hline A4+A8 & & & &1 & \\ \hline A5+A6+A7 & & & &1 &1\\ \hline \end{array} $$缩点矩阵 R'的缩边矩阵 S' 公式:$ S'=R'-(R'-I)^2-I$
$$S'=\begin{array} {c|c|c|c|c|c|c|c}{M_{5 \times5}} &A1 &A2 &A3 &A4+A8 &A5+A6+A7\\ \hline A1 & & & &1 & \\ \hline A2 & & & & &1\\ \hline A3 & & & & &1\\ \hline A4+A8 & & & & & \\ \hline A5+A6+A7 & & & &1 & \\ \hline \end{array} $$以最简菊花链表示回路代入回去,即为一般性骨架矩阵 $S$
$$S=\begin{array} {c|c|c|c|c|c|c|c}{M_{8 \times8}} &A1 &A2 &A3 &A4 &A5 &A6 &A7 &A8\\ \hline A1 & & & &1 & & & & \\ \hline A2 & & & & & &1 & & \\ \hline A3 & & & & & & &1 & \\ \hline A4 & & & & & & & &1\\ \hline A5 & & & & & &1 & &1\\ \hline A6 & & & & & & &1 & \\ \hline A7 & & & & &1 & & & \\ \hline A8 & & & &1 & & & & \\ \hline \end{array} $$