模糊可达矩阵的运算


论文写作或者计算需要帮助可发邮件到 hwstu # sohu.com 把 #替换成@,请说清来意,不必拐弯抹角,浪费相互之间的时间。

模糊乘算子 模糊加算子



选择的模糊算子对如下


$$ \begin{array} {c|c}{属性} & 模糊乘 \odot & 模糊加 \oplus \\ \hline 名称 &\color{red}{取最小} &\color{blue}{取最大} \\ \hline 计算公式 &\color{red}{min(p,q)} &\color{blue}{max(p,q)} \\ \hline \end{array} $$

模糊相乘矩阵 $ \tilde B $


$$\tilde B=\begin{array} {c|c|c}{M_{12 \times12}} &A &B &C &D &E &F &G &H &I &J &K &L\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.79\\ \hline B &0 &1 &0 &0 &0 &0.1 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0.47 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0.08 &0 &0.09 &0 &0\\ \hline E &0 &0 &0.64 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0.42 &0 &0 &0.64\\ \hline G &0 &0 &0 &0 &0 &0.6 &1 &0 &0 &0 &0.24 &0\\ \hline H &0 &0 &0 &0.72 &0 &0.68 &0 &1 &0 &0 &0 &0\\ \hline I &0 &0.17 &0 &0 &0 &0 &0 &0.67 &1 &0 &0 &0\\ \hline J &0 &0 &0 &0.69 &0.01 &0 &0 &0 &0 &1 &0 &0\\ \hline K &0 &0 &0.74 &0 &0.18 &0 &0 &0 &0 &0 &1 &0\\ \hline L &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$

基于选择的算子对求解模糊可达矩阵 $ \tilde R $


$$\tilde B_{1}=\begin{array} {c|c|c}{M_{12 \times12}} &A &B &C &D &E &F &G &H &I &J &K &L\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.79\\ \hline B &0 &1 &0 &0 &0 &0.1 &0 &0 &0 &0 &0 &0\\ \hline C &0 &0.47 &1 &0 &0 &0 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0 &0 &0 &0.08 &0 &0.09 &0 &0\\ \hline E &0 &0 &0.64 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline F &0 &0 &0 &0 &0 &1 &0 &0 &0.42 &0 &0 &0.64\\ \hline G &0 &0 &0 &0 &0 &0.6 &1 &0 &0 &0 &0.24 &0\\ \hline H &0 &0 &0 &0.72 &0 &0.68 &0 &1 &0 &0 &0 &0\\ \hline I &0 &0.17 &0 &0 &0 &0 &0 &0.67 &1 &0 &0 &0\\ \hline J &0 &0 &0 &0.69 &0.01 &0 &0 &0 &0 &1 &0 &0\\ \hline K &0 &0 &0.74 &0 &0.18 &0 &0 &0 &0 &0 &1 &0\\ \hline L &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$$$\tilde B_{2}=\begin{array} {c|c|c}{M_{12 \times12}} &A &B &C &D &E &F &G &H &I &J &K &L\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.79\\ \hline B &0 &1 &0 &0 &0 &0.1 &0 &0 &0.1 &0 &0 &0.1\\ \hline C &0 &0.47 &1 &0 &0 &0.1 &0 &0 &0 &0 &0 &0\\ \hline D &0 &0 &0 &1 &0.01 &0.08 &0 &0.08 &0 &0.09 &0 &0\\ \hline E &0 &0.47 &0.64 &0 &1 &0 &0 &0 &0 &0 &0 &0\\ \hline F &0 &0.17 &0 &0 &0 &1 &0 &0.42 &0.42 &0 &0 &0.64\\ \hline G &0 &0 &0.24 &0 &0.18 &0.6 &1 &0 &0.42 &0 &0.24 &0.6\\ \hline H &0 &0 &0 &0.72 &0 &0.68 &0 &1 &0.42 &0.09 &0 &0.64\\ \hline I &0 &0.17 &0 &0.67 &0 &0.67 &0 &0.67 &1 &0 &0 &0\\ \hline J &0 &0 &0.01 &0.69 &0.01 &0 &0 &0.08 &0 &1 &0 &0\\ \hline K &0 &0.47 &0.74 &0 &0.18 &0 &0 &0 &0 &0 &1 &0\\ \hline L &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$$$\tilde B_{3}=\begin{array} {c|c|c}{M_{12 \times12}} &A &B &C &D &E &F &G &H &I &J &K &L\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.79\\ \hline B &0 &1 &0 &0 &0 &0.1 &0 &0.1 &0.1 &0 &0 &0.1\\ \hline C &0 &0.47 &1 &0 &0 &0.1 &0 &0 &0.1 &0 &0 &0.1\\ \hline D &0 &0 &0.01 &1 &0.01 &0.08 &0 &0.08 &0.08 &0.09 &0 &0.08\\ \hline E &0 &0.47 &0.64 &0 &1 &0.1 &0 &0 &0 &0 &0 &0\\ \hline F &0 &0.17 &0 &0.42 &0 &1 &0 &0.42 &0.42 &0 &0 &0.64\\ \hline G &0 &0.24 &0.24 &0 &0.18 &0.6 &1 &0.42 &0.42 &0 &0.24 &0.6\\ \hline H &0 &0.17 &0 &0.72 &0.01 &0.68 &0 &1 &0.42 &0.09 &0 &0.64\\ \hline I &0 &0.17 &0 &0.67 &0 &0.67 &0 &0.67 &1 &0.09 &0 &0.64\\ \hline J &0 &0.01 &0.01 &0.69 &0.01 &0.08 &0 &0.08 &0 &1 &0 &0\\ \hline K &0 &0.47 &0.74 &0 &0.18 &0.1 &0 &0 &0 &0 &1 &0\\ \hline L &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$$$\tilde B_{4}=\begin{array} {c|c|c}{M_{12 \times12}} &A &B &C &D &E &F &G &H &I &J &K &L\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.79\\ \hline B &0 &1 &0 &0.1 &0 &0.1 &0 &0.1 &0.1 &0 &0 &0.1\\ \hline C &0 &0.47 &1 &0 &0 &0.1 &0 &0.1 &0.1 &0 &0 &0.1\\ \hline D &0 &0.08 &0.01 &1 &0.01 &0.08 &0 &0.08 &0.08 &0.09 &0 &0.08\\ \hline E &0 &0.47 &0.64 &0 &1 &0.1 &0 &0 &0.1 &0 &0 &0.1\\ \hline F &0 &0.17 &0 &0.42 &0 &1 &0 &0.42 &0.42 &0.09 &0 &0.64\\ \hline G &0 &0.24 &0.24 &0.42 &0.18 &0.6 &1 &0.42 &0.42 &0 &0.24 &0.6\\ \hline H &0 &0.17 &0.01 &0.72 &0.01 &0.68 &0 &1 &0.42 &0.09 &0 &0.64\\ \hline I &0 &0.17 &0 &0.67 &0.01 &0.67 &0 &0.67 &1 &0.09 &0 &0.64\\ \hline J &0 &0.01 &0.01 &0.69 &0.01 &0.08 &0 &0.08 &0.08 &1 &0 &0.08\\ \hline K &0 &0.47 &0.74 &0 &0.18 &0.1 &0 &0 &0.1 &0 &1 &0.1\\ \hline L &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$$$\tilde B_{5}=\begin{array} {c|c|c}{M_{12 \times12}} &A &B &C &D &E &F &G &H &I &J &K &L\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.79\\ \hline B &0 &1 &0 &0.1 &0 &0.1 &0 &0.1 &0.1 &0.09 &0 &0.1\\ \hline C &0 &0.47 &1 &0.1 &0 &0.1 &0 &0.1 &0.1 &0 &0 &0.1\\ \hline D &0 &0.08 &0.01 &1 &0.01 &0.08 &0 &0.08 &0.08 &0.09 &0 &0.08\\ \hline E &0 &0.47 &0.64 &0 &1 &0.1 &0 &0.1 &0.1 &0 &0 &0.1\\ \hline F &0 &0.17 &0 &0.42 &0.01 &1 &0 &0.42 &0.42 &0.09 &0 &0.64\\ \hline G &0 &0.24 &0.24 &0.42 &0.18 &0.6 &1 &0.42 &0.42 &0.09 &0.24 &0.6\\ \hline H &0 &0.17 &0.01 &0.72 &0.01 &0.68 &0 &1 &0.42 &0.09 &0 &0.64\\ \hline I &0 &0.17 &0.01 &0.67 &0.01 &0.67 &0 &0.67 &1 &0.09 &0 &0.64\\ \hline J &0 &0.08 &0.01 &0.69 &0.01 &0.08 &0 &0.08 &0.08 &1 &0 &0.08\\ \hline K &0 &0.47 &0.74 &0 &0.18 &0.1 &0 &0.1 &0.1 &0 &1 &0.1\\ \hline L &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$$$\tilde B_{6}=\begin{array} {c|c|c}{M_{12 \times12}} &A &B &C &D &E &F &G &H &I &J &K &L\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.79\\ \hline B &0 &1 &0 &0.1 &0.01 &0.1 &0 &0.1 &0.1 &0.09 &0 &0.1\\ \hline C &0 &0.47 &1 &0.1 &0 &0.1 &0 &0.1 &0.1 &0.09 &0 &0.1\\ \hline D &0 &0.08 &0.01 &1 &0.01 &0.08 &0 &0.08 &0.08 &0.09 &0 &0.08\\ \hline E &0 &0.47 &0.64 &0.1 &1 &0.1 &0 &0.1 &0.1 &0 &0 &0.1\\ \hline F &0 &0.17 &0.01 &0.42 &0.01 &1 &0 &0.42 &0.42 &0.09 &0 &0.64\\ \hline G &0 &0.24 &0.24 &0.42 &0.18 &0.6 &1 &0.42 &0.42 &0.09 &0.24 &0.6\\ \hline H &0 &0.17 &0.01 &0.72 &0.01 &0.68 &0 &1 &0.42 &0.09 &0 &0.64\\ \hline I &0 &0.17 &0.01 &0.67 &0.01 &0.67 &0 &0.67 &1 &0.09 &0 &0.64\\ \hline J &0 &0.08 &0.01 &0.69 &0.01 &0.08 &0 &0.08 &0.08 &1 &0 &0.08\\ \hline K &0 &0.47 &0.74 &0.1 &0.18 &0.1 &0 &0.1 &0.1 &0 &1 &0.1\\ \hline L &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$$$\tilde B_{7}=\begin{array} {c|c|c}{M_{12 \times12}} &A &B &C &D &E &F &G &H &I &J &K &L\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.79\\ \hline B &0 &1 &0.01 &0.1 &0.01 &0.1 &0 &0.1 &0.1 &0.09 &0 &0.1\\ \hline C &0 &0.47 &1 &0.1 &0.01 &0.1 &0 &0.1 &0.1 &0.09 &0 &0.1\\ \hline D &0 &0.08 &0.01 &1 &0.01 &0.08 &0 &0.08 &0.08 &0.09 &0 &0.08\\ \hline E &0 &0.47 &0.64 &0.1 &1 &0.1 &0 &0.1 &0.1 &0.09 &0 &0.1\\ \hline F &0 &0.17 &0.01 &0.42 &0.01 &1 &0 &0.42 &0.42 &0.09 &0 &0.64\\ \hline G &0 &0.24 &0.24 &0.42 &0.18 &0.6 &1 &0.42 &0.42 &0.09 &0.24 &0.6\\ \hline H &0 &0.17 &0.01 &0.72 &0.01 &0.68 &0 &1 &0.42 &0.09 &0 &0.64\\ \hline I &0 &0.17 &0.01 &0.67 &0.01 &0.67 &0 &0.67 &1 &0.09 &0 &0.64\\ \hline J &0 &0.08 &0.01 &0.69 &0.01 &0.08 &0 &0.08 &0.08 &1 &0 &0.08\\ \hline K &0 &0.47 &0.74 &0.1 &0.18 &0.1 &0 &0.1 &0.1 &0.09 &1 &0.1\\ \hline L &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$$$\tilde B_{8}=\begin{array} {c|c|c}{M_{12 \times12}} &A &B &C &D &E &F &G &H &I &J &K &L\\ \hline A &1 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0.79\\ \hline B &0 &1 &0.01 &0.1 &0.01 &0.1 &0 &0.1 &0.1 &0.09 &0 &0.1\\ \hline C &0 &0.47 &1 &0.1 &0.01 &0.1 &0 &0.1 &0.1 &0.09 &0 &0.1\\ \hline D &0 &0.08 &0.01 &1 &0.01 &0.08 &0 &0.08 &0.08 &0.09 &0 &0.08\\ \hline E &0 &0.47 &0.64 &0.1 &1 &0.1 &0 &0.1 &0.1 &0.09 &0 &0.1\\ \hline F &0 &0.17 &0.01 &0.42 &0.01 &1 &0 &0.42 &0.42 &0.09 &0 &0.64\\ \hline G &0 &0.24 &0.24 &0.42 &0.18 &0.6 &1 &0.42 &0.42 &0.09 &0.24 &0.6\\ \hline H &0 &0.17 &0.01 &0.72 &0.01 &0.68 &0 &1 &0.42 &0.09 &0 &0.64\\ \hline I &0 &0.17 &0.01 &0.67 &0.01 &0.67 &0 &0.67 &1 &0.09 &0 &0.64\\ \hline J &0 &0.08 &0.01 &0.69 &0.01 &0.08 &0 &0.08 &0.08 &1 &0 &0.08\\ \hline K &0 &0.47 &0.74 &0.1 &0.18 &0.1 &0 &0.1 &0.1 &0.09 &1 &0.1\\ \hline L &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &0 &1\\ \hline \end{array} $$

模糊可达矩阵 $ \tilde R = \tilde B_{ 8}$


请联系作者 hwstu # sohu.com